on the problems in "1 Algebraic functions/1.2 Trinomial products/1.2.2 Quartic"
Test results for the 297 problems in "1.2.2.2 (dx)^m (a+b $\left.x^{\wedge} 2+c x^{\wedge} 4\right)^{\wedge} p . t x t "$
Problem 2: Unable to integrate problem.

$$
\int \frac{1}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{1 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 2 steps):

$$
\frac{\operatorname{arcsinh}\left(\frac{x \sqrt{b}}{\sqrt{a}}\right) \sqrt{a} \sqrt{1+\frac{b x^{2}}{a}}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{1 / 4} \sqrt{b}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{1}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{1 / 4}} \mathrm{~d} x
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{4}+2 a x^{2}+a^{2}+1} \mathrm{~d} x
$$

Optimal(type 3, 223 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\ln \left(x^{2}+\sqrt{a^{2}+1}-x \sqrt{2} \sqrt{-a+\sqrt{a^{2}+1}}\right) \sqrt{2}}{8 \sqrt{a^{2}+1} \sqrt{-a+\sqrt{a^{2}+1}}}+\frac{\ln \left(x^{2}+\sqrt{a^{2}+1}+x \sqrt{2} \sqrt{-a+\sqrt{a^{2}+1}}\right) \sqrt{2}}{-\sqrt{a^{2}+1}}-\sqrt{\sqrt{2}} \\
& \quad \arctan \left(\frac{x \sqrt{2}+\sqrt{a^{2}+1} \sqrt{-a+\sqrt{a^{2}+1}}}{\sqrt{a+\sqrt{a^{2}+1}}}\right) \sqrt{2} \\
& \quad+\frac{\arctan \left(\sqrt{a^{2}+1}\right.}{4 \sqrt{a^{2}+1} \sqrt{a+\sqrt{a^{2}+1}}}
\end{aligned}
$$

Result (type 3, 1069 leaves):

$$
\begin{aligned}
& -\frac{\ln \left(x^{2}-\sqrt{2 \sqrt{a^{2}+1}-2 a x}+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a} a^{2}}{8\left(a^{2}+1\right)}-\frac{\ln \left(x^{2}-\sqrt{2 \sqrt{a^{2}+1}-2 a x}+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a a^{3}}}{8\left(a^{2}+1\right)^{3 / 2}} \\
& -\frac{\ln \left(x^{2}-\sqrt{2 \sqrt{a^{2}+1}-2 a x} x+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a}}{8\left(a^{2}+1\right)}-\frac{\ln \left(x^{2}-\sqrt{\left.2 \sqrt{a^{2}+1}-2 a x+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a} a}\right.}{8\left(a^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \arctan \left(\frac{2 x-\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right) a^{2} \quad \arctan \left(\frac{2 x-\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right) a^{4} \quad \arctan \left(\frac{2 x-\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right) \\
& 2 \sqrt{a^{2}+1} \sqrt{2 \sqrt{a^{2}+1}+2 a} \quad 2\left(a^{2}+1\right)^{3 / 2} \sqrt{2 \sqrt{a^{2}+1}+2 a} \quad 2 \sqrt{a^{2}+1} \sqrt{2 \sqrt{a^{2}+1}+2 a} \\
& +\frac{3 \arctan \left(\frac{2 x-\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right) a^{2}}{\arctan \left(\frac{2 x-\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right)}+ \\
& \frac{\ln \left(x^{2}+\sqrt{2 \sqrt{a^{2}+1}-2 a x}+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a} a^{2}}{8\left(a^{2}+1\right)} \\
& +\frac{\ln \left(x^{2}+\sqrt{2 \sqrt{a^{2}+1}-2 a x}+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a} a^{3}}{8\left(a^{2}+1\right)^{3 / 2}}+\frac{\ln \left(x^{2}+\sqrt{2 \sqrt{a^{2}+1}-2 a x}+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a}}{8\left(a^{2}+1\right)} \\
& +\frac{\ln \left(x^{2}+\sqrt{2 \sqrt{a^{2}+1}-2 a x}+\sqrt{a^{2}+1}\right) \sqrt{2 \sqrt{a^{2}+1}-2 a a}}{8\left(a^{2}+1\right)^{3 / 2}}-\frac{\arctan \left(\frac{2 x+\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right) a^{2}}{2 \sqrt{a^{2}+1} \sqrt{2 \sqrt{a^{2}+1}+2 a}}+\frac{\arctan \left(\frac{2 x+\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\left.\sqrt{2 \sqrt{a^{2}+1}+2 a}\right) a^{4}}\right.}{2\left(a^{2}+1\right)^{3 / 2} \sqrt{2 \sqrt{a^{2}+1}+2 a}} \\
& -\frac{\arctan \left(\frac{2 x+\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right)}{2 \sqrt{a^{2}+1} \sqrt{2 \sqrt{a^{2}+1}+2 a}}+\frac{3 \arctan \left(\frac{2 x+\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right) a^{2}}{2\left(a^{2}+1\right)^{3 / 2} \sqrt{2 \sqrt{a^{2}+1}+2 a}}+\frac{\arctan \left(\frac{2 x+\sqrt{2 \sqrt{a^{2}+1}-2 a}}{\sqrt{2 \sqrt{a^{2}+1}+2 a}}\right)}{\left(a^{2}+1\right)^{3 / 2} \sqrt{2 \sqrt{a^{2}+1}+2 a}}
\end{aligned}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{4}+2 x^{2}+2} d x
$$

Optimal(type 3, 124 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-2+2 \sqrt{2}}\right)}{8 \sqrt{\sqrt{2}-1}}+\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-2+2 \sqrt{2}}\right)}{8 \sqrt{\sqrt{2}-1}}-\frac{\arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{2}}) \sqrt{\sqrt{2}-1}}{\sqrt{2+2 \sqrt{2}}}\right)}{4} \\
& \quad \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{2}}}{\sqrt{2+2 \sqrt{2}}}\right) \sqrt{\sqrt{2}-1} \\
& +\frac{}{4}
\end{aligned}
$$

Result(type 3, 385 leaves):

$$
\begin{aligned}
& \frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-2+2 \sqrt{2}}\right) \sqrt{-2+2 \sqrt{2}} \sqrt{2}}{16}+\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-2+2 \sqrt{2}}\right) \sqrt{-2+2 \sqrt{2}}}{8}-\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{2}})(-2+2 \sqrt{2}) \sqrt{2}}{\sqrt{2+2 \sqrt{2}}}\right)}{8 \sqrt{2+2 \sqrt{2}}} \\
& -\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{2}}}{\sqrt{2+2 \sqrt{2}}}\right)(-2+2 \sqrt{2})}{4 \sqrt{2+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{2}}}{\sqrt{2+2 \sqrt{2}}}\right) \sqrt{2}}{2 \sqrt{2+2 \sqrt{2}}}-\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-2+2 \sqrt{2}}\right) \sqrt{-2+2 \sqrt{2}} \sqrt{2}}{16} \\
& \quad-\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-2+2 \sqrt{2}}\right) \sqrt{-2+2 \sqrt{2}}}{8} \\
& \quad+\frac{\arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{2}}}{\sqrt{2+2 \sqrt{2}}}\right)(-2+2 \sqrt{2}) \sqrt{2}}{8 \sqrt{2+2 \sqrt{2}}} \\
& \left.\quad+\frac{\arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{2}}}{\sqrt{2+2 \sqrt{2}}}\right)(-2+2 \sqrt{2})}{4 \sqrt{2+2 \sqrt{2}}}\right) \\
& \left.\quad \frac{2 x-\sqrt{-2+2 \sqrt{2}}}{\sqrt{2+2 \sqrt{2}}}\right) \sqrt{2} \\
& 2 \sqrt{2+2 \sqrt{2}}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-3 x^{4}+5 x^{2}+2}} d x
$$

Optimal(type 4, 13 leaves, 2 steps):

$$
\text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{6}\right)
$$

Result(type 4, 50 leaves):

$$
\frac{\sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{3 x^{2}+1} \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{6}\right)}{2 \sqrt{-3 x^{4}+5 x^{2}+2}}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-3 x^{4}+4 x^{2}+2}} d x
$$

Optimal(type 4, 37 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(\frac{x \sqrt{-4+2 \sqrt{10}}}{2}, \frac{\mathrm{I} \sqrt{6}}{3}+\frac{\mathrm{I} \sqrt{15}}{3}\right) \sqrt{12+6 \sqrt{10}}}{6}
$$

Result(type 4, 83 leaves):

$$
\frac{2 \sqrt{1-\left(-1+\frac{\sqrt{10}}{2}\right) x^{2}} \sqrt{1-\left(-1-\frac{\sqrt{10}}{2}\right) x^{2}} \text { EllipticF }\left(\frac{x \sqrt{-4+2 \sqrt{10}}}{2}, \frac{\mathrm{I} \sqrt{6}}{3}+\frac{\mathrm{I} \sqrt{15}}{3}\right)}{\sqrt{-4+2 \sqrt{10}} \sqrt{-3 x^{4}+4 x^{2}+2}}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-3 x^{4}+3 x^{2}+2}} d x
$$

Optimal(type 4, 37 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(\frac{x \sqrt{6}}{\sqrt{3+\sqrt{33}}}, \frac{\mathrm{I} \sqrt{6}}{4}+\frac{\mathrm{I} \sqrt{22}}{4}\right) \sqrt{2}}{\sqrt{-3+\sqrt{33}}}
$$

Result(type 4, 79 leaves):

$$
\frac{2 \sqrt{1-\left(-\frac{3}{4}+\frac{\sqrt{33}}{4}\right) x^{2}} \sqrt{1-\left(-\frac{3}{4}-\frac{\sqrt{33}}{4}\right) x^{2}} \text { EllipticF }\left(\frac{x \sqrt{-3+\sqrt{33}}}{2}, \frac{\mathrm{I} \sqrt{6}}{4}+\frac{\mathrm{I} \sqrt{22}}{4}\right)}{\sqrt{-3+\sqrt{33}} \sqrt{-3 x^{4}+3 x^{2}+2}}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-3 x^{4}+2 x^{2}+2}} \mathrm{~d} x
$$

Optimal(type 4, 34 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(\frac{x \sqrt{3}}{\sqrt{1+\sqrt{7}}}, \frac{\mathrm{I} \sqrt{6}}{6}+\frac{\mathrm{I} \sqrt{42}}{6}\right)}{\sqrt{-1+\sqrt{7}}}
$$

Result(type 4, 83 leaves):

$$
\frac{2 \sqrt{1-\left(-\frac{1}{2}+\frac{\sqrt{7}}{2}\right) x^{2}} \sqrt{1-\left(-\frac{\sqrt{7}}{2}-\frac{1}{2}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{-2+2 \sqrt{7}}}{2}, \frac{\mathrm{I} \sqrt{6}}{6}+\frac{\mathrm{I} \sqrt{42}}{6}\right)}{\sqrt{-2+2 \sqrt{7}} \sqrt{-3 x^{4}+2 x^{2}+2}}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-3 x^{4}-2 x^{2}+2}} d x
$$

Optimal(type 4, 34 leaves, 2 steps):

$$
\frac{\operatorname{EllipticF}\left(\frac{x \sqrt{3}}{\sqrt{-1+\sqrt{7}}}, \frac{\mathrm{I} \sqrt{42}}{6}-\frac{\mathrm{I} \sqrt{6}}{6}\right)}{\sqrt{1+\sqrt{7}}}
$$

Result (type 4, 83 leaves):

$$
\frac{2 \sqrt{1-\left(\frac{\sqrt{7}}{2}+\frac{1}{2}\right) x^{2} \sqrt{1-\left(\frac{1}{2}-\frac{\sqrt{7}}{2}\right) x^{2}} \text { EllipticF }\left(\frac{\sqrt{2+2 \sqrt{7}} x}{2}, \frac{\mathrm{I} \sqrt{42}}{6}-\frac{\mathrm{I} \sqrt{6}}{6}\right)}}{\sqrt{2+2 \sqrt{7}} \sqrt{-3 x^{4}-2 x^{2}+2}}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-2 x^{4}+5 x^{2}+3}} d x
$$

Optimal(type 4, 13 leaves, 2 steps):

$$
\text { EllipticF }\left(\frac{x \sqrt{3}}{3}, \mathrm{I} \sqrt{6}\right)
$$

Result(type 4, 50 leaves):

$$
\frac{\sqrt{3} \sqrt{-3 x^{2}+9} \sqrt{2 x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{3}}{3}, \mathrm{I} \sqrt{6}\right)}{3 \sqrt{-2 x^{4}+5 x^{2}+3}}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-2 x^{4}-x^{2}+3}} \mathrm{~d} x
$$

Optimal(type 4, 13 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(x, \frac{1}{3} \sqrt{6}\right) \sqrt{3}}{3}
$$

Result(type 4, 42 leaves):

$$
\frac{\sqrt{-x^{2}+1} \sqrt{6 x^{2}+9} \text { EllipticF }\left(x, \frac{\mathrm{I}}{3} \sqrt{6}\right)}{3 \sqrt{-2 x^{4}-x^{2}+3}}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-2 x^{4}-5 x^{2}+3}} d x
$$

Optimal(type 4, 17 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(x \sqrt{2}, \frac{I}{6} \sqrt{6}\right) \sqrt{6}}{6}
$$

Result(type 4, 49 leaves):

$$
\frac{\sqrt{2} \sqrt{-2 x^{2}+1} \sqrt{3 x^{2}+9} \text { EllipticF }\left(x \sqrt{2}, \frac{\mathrm{I}}{6} \sqrt{6}\right)}{6 \sqrt{-2 x^{4}-5 x^{2}+3}}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-2 x^{4}-7 x^{2}+3}} d x
$$

Optimal(type 4, 35 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(\frac{2 x}{\sqrt{-7+\sqrt{73}}}, \frac{\mathrm{I} \sqrt{438}}{12}-\frac{7 \mathrm{I} \sqrt{6}}{12}\right) \sqrt{2}}{\sqrt{7+\sqrt{73}}}
$$

Result(type 4, 83 leaves):

$$
\frac{6 \sqrt{1-\left(\frac{7}{6}+\frac{\sqrt{73}}{6}\right) x^{2}} \sqrt{1-\left(\frac{7}{6}-\frac{\sqrt{73}}{6}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{42+6 \sqrt{73}}}{6}, \frac{\mathrm{I} \sqrt{438}}{12}-\frac{7 \mathrm{I} \sqrt{6}}{12}\right)}{\sqrt{42+6 \sqrt{73}} \sqrt{-2 x^{4}-7 x^{2}+3}}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-2 x^{4}+5 x^{2}+2}} d x
$$

Optimal(type 4, 31 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(\frac{2 x}{\sqrt{5+\sqrt{41}}}, \frac{5 \mathrm{I}}{4}+\frac{\mathrm{I} \sqrt{41}}{4}\right) \sqrt{2}}{\sqrt{-5+\sqrt{41}}}
$$

Result(type 4, 75 leaves):

$$
\frac{2 \sqrt{1-\left(-\frac{5}{4}+\frac{\sqrt{41}}{4}\right) x^{2}} \sqrt{1-\left(-\frac{5}{4}-\frac{\sqrt{41}}{4}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{-5+\sqrt{41}}}{2}, \frac{5 \mathrm{I}}{4}+\frac{\mathrm{I} \sqrt{41}}{4}\right)}{\sqrt{-5+\sqrt{41}} \sqrt{-2 x^{4}+5 x^{2}+2}}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-7 x^{4}+5 x^{2}+2}} \mathrm{~d} x
$$

Optimal(type 4, 13 leaves, 2 steps):

$$
\frac{\operatorname{EllipticF}\left(x, \frac{\mathrm{I}}{2} \sqrt{14}\right) \sqrt{2}}{2}
$$

Result(type 4, 42 leaves):

$$
\frac{\sqrt{-x^{2}+1} \sqrt{14 x^{2}+4} \text { EllipticF }\left(x, \frac{\mathrm{I}}{2} \sqrt{14}\right)}{2 \sqrt{-7 x^{4}+5 x^{2}+2}}
$$

Problem 40: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-9 x^{4}+5 x^{2}+2}} d x
$$

Optimal(type 4, 38 leaves, 2 steps):

$$
\frac{\text { EllipticF }\left(\frac{3 x \sqrt{2}}{\sqrt{5+\sqrt{97}}}, \frac{5 \mathrm{I} \sqrt{2}}{12}+\frac{\mathrm{I} \sqrt{194}}{12}\right) \sqrt{2}}{\sqrt{-5+\sqrt{97}}}
$$

Result (type 4, 79 leaves):

$$
\frac{2 \sqrt{1-\left(-\frac{5}{4}+\frac{\sqrt{97}}{4}\right) x^{2}} \sqrt{1-\left(-\frac{5}{4}-\frac{\sqrt{97}}{4}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{-5+\sqrt{97}}}{2}, \frac{5 \mathrm{I} \sqrt{2}}{12}+\frac{\mathrm{I} \sqrt{194}}{12}\right)}{\sqrt{-5+\sqrt{97}} \sqrt{-9 x^{4}+5 x^{2}+2}}
$$

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c x^{4}+b x^{2}\right)^{3 / 2}}{x^{7}} \mathrm{~d} x
$$

Optimal (type 3, 63 leaves, 5 steps):

$$
-\frac{\left(c x^{4}+b x^{2}\right)^{3 / 2}}{3 x^{6}}+c^{3 / 2} \operatorname{arctanh}\left(\frac{x^{2} \sqrt{c}}{\sqrt{c x^{4}+b x^{2}}}\right)-\frac{c \sqrt{c x^{4}+b x^{2}}}{x^{2}}
$$

Result(type 3, 128 leaves):

$$
\frac{\left(c x^{4}+b x^{2}\right)^{3 / 2}\left(2 c^{5 / 2}\left(c x^{2}+b\right)^{3 / 2} x^{4}+3 c^{5 / 2} \sqrt{c x^{2}+b} x^{4} b-2 c^{3 / 2}\left(c x^{2}+b\right)^{5 / 2} x^{2}+3 \ln \left(x \sqrt{c}+\sqrt{c x^{2}+b}\right) x^{3} b^{2} c^{2}-\left(c x^{2}+b\right)^{5 / 2} b \sqrt{c}\right)}{3 x^{6}\left(c x^{2}+b\right)^{3 / 2} b^{2} \sqrt{c}}
$$

Problem 108: Result more than twice size of optimal antiderivative.

$$
\int(c x)^{m}\left(c x^{4}+b x^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 73 leaves, 4 steps):

$$
\frac{b^{3} x^{7}(c x)^{m}}{7+m}+\frac{3 b^{2} c x^{9}(c x)^{m}}{9+m}+\frac{3 b c^{2} x^{11}(c x)^{m}}{11+m}+\frac{c^{3} x^{13}(c x)^{m}}{13+m}
$$

Result(type 3, 180 leaves):
$\frac{1}{(13+m)(11+m)(9+m)(7+m)}\left((c x)^{m}\left(c^{3} m^{3} x^{6}+27 c^{3} m^{2} x^{6}+3 b c^{2} m^{3} x^{4}+239 c^{3} m x^{6}+87 b c^{2} m^{2} x^{4}+693 c^{3} x^{6}+3 b^{2} c m^{3} x^{2}+813 b c^{2} m x^{4}\right.\right.$

$$
\left.\left.+93 b^{2} c m^{2} x^{2}+2457 c^{2} x^{4} b+b^{3} m^{3}+933 b^{2} c m x^{2}+33 b^{3} m^{2}+3003 c x^{2} b^{2}+359 b^{3} m+1287 b^{3}\right) x^{7}\right)
$$

Problem 109: Unable to integrate problem.

$$
\int \frac{(c x)^{m}}{\left(c x^{4}+b x^{2}\right)^{2}} d x
$$

Optimal(type 5, 43 leaves, 3 steps):

$$
-\frac{(c x)^{m} \text { hypergeom }\left(\left[2,-\frac{3}{2}+\frac{m}{2}\right],\left[-\frac{1}{2}+\frac{m}{2}\right],-\frac{c x^{2}}{b}\right)}{b^{2}(3-m) x^{3}}
$$

Result(type 8, 21 leaves):

$$
\int \frac{(c x)^{m}}{\left(c x^{4}+b x^{2}\right)^{2}} \mathrm{~d} x
$$

Problem 127: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{3}}{x^{15}} \mathrm{~d} x
$$

Optimal(type 1, 17 leaves, 2 steps):

$$
-\frac{\left(b x^{2}+a\right)^{7}}{14 a x^{14}}
$$

Result(type 1, 68 leaves):

$$
-\frac{b^{6}}{2 x^{2}}-\frac{3 a b^{5}}{2 x^{4}}-\frac{5 a^{2} b^{4}}{2 x^{6}}-\frac{5 a^{3} b^{3}}{2 x^{8}}-\frac{a^{6}}{14 x^{14}}-\frac{a^{5} b}{2 x^{12}}-\frac{3 a^{4} b^{2}}{2 x^{10}}
$$

Problem 158: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}}{x^{13}} \mathrm{~d} x
$$

Optimal(type 2, 28 leaves, 3 steps):

$$
-\frac{\left(b x^{2}+a\right)^{5} \sqrt{\left(b x^{2}+a\right)^{2}}}{12 a x^{12}}
$$

Result(type 2, 77 leaves):

$$
-\frac{\left(6 b^{5} x^{10}+15 a b^{4} x^{8}+20 a^{2} b^{3} x^{6}+15 a^{3} b^{2} x^{4}+6 a^{4} b x^{2}+a^{5}\right)\left(\left(b x^{2}+a\right)^{2}\right)^{5 / 2}}{12 x^{12}\left(b x^{2}+a\right)^{5}}
$$

Problem 177: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 4, 524 leaves, 6 steps):

$$
-\frac{3 x\left(b x^{2}+a\right)}{2 b\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}}-\frac{9 a x\left(1+\frac{b x^{2}}{a}\right)^{4 / 3}}{2 b\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)}
$$

$$
\begin{aligned}
& \text { 3) EllipticF } \left.\left(\frac{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\sqrt{3}}{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right) \sqrt{\frac{1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\left(1+\frac{b x^{2}}{a}\right)^{2 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}} \sqrt{2}}\right) \\
& +\frac{1}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}}
\end{aligned}
$$

$$
\left.{ }^{3}\right) \text { EllipticE }\left(\frac{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\sqrt{3}}{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}}, 2 I-\mathrm{I} \sqrt{3}\right) \sqrt{\left.\frac{1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\left(1+\frac{b x^{2}}{a}\right)^{2 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}}\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)}
$$

Result(type 8, 26 leaves):

$$
\int \frac{x^{2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}} \mathrm{~d} x
$$

Problem 178: Unable to integrate problem.

$$
\int \frac{1}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}} d x
$$

Optimal(type 4, 516 leaves, 6 steps):

$$
\begin{aligned}
& \frac{3 x\left(b x^{2}+a\right)}{2 a\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}}+\frac{3 x\left(1+\frac{b x^{2}}{a}\right)^{4 / 3}}{2\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)} \\
& +\frac{1}{2 b x\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}}\left(3 ^ { 3 / 4 } a (1 + \frac { b x ^ { 2 } } { a }) ^ { 4 / 3 } \left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 /}\right.\right. \\
& \left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}
\end{aligned}
$$

$\left.{ }^{3}\right)$ EllipticF $\left.\left(\frac{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\sqrt{3}}{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right) \sqrt{\frac{1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\left(1+\frac{b x^{2}}{a}\right)^{2 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}} \sqrt{2}}\right)$
$-\frac{1}{4 b x\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3} \sqrt{\frac{-1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}}}}\left(33^{1 / 4} a\left(1+\frac{b x^{2}}{a}\right)^{4 / 3}\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 /}\right.\right.$
$\left.{ }^{3}\right)$ EllipticE $\left.\left.\left(\frac{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\sqrt{3}}{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right) \sqrt{\frac{1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\left(1+\frac{b x^{2}}{a}\right)^{2 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}}\left(\frac{\sqrt{6}}{2}\right.}+\frac{\sqrt{2}}{2}\right)\right)$
Result(type 8, 22 leaves):

$$
\int \frac{1}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}} \mathrm{~d} x
$$

Problem 179: Unable to integrate problem.

$$
\int \frac{1}{x^{2}\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 4, 551 leaves, 7 steps):

$$
\frac{3\left(b x^{2}+a\right)}{2 a x\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}}-\frac{5\left(b x^{2}+a\right)^{2}}{2 a^{2} x\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}}-\frac{5 b x\left(1+\frac{b x^{2}}{a}\right)^{4 / 3}}{2 a\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)}
$$

$$
-\frac{1}{6 x\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3} \sqrt{\frac{-1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}}}\left(5 (1 + \frac { b x ^ { 2 } } { a }) ^ { 4 / 3 } \left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 /}\right.\right. \text { (1/3}}(
$$

$$
\begin{aligned}
& \text { 3) EllipticF } \left.\left(\frac{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\sqrt{3}}{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right) \sqrt{\frac{1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\left(1+\frac{b x^{2}}{a}\right)^{2 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}} 3^{3 / 4} \sqrt{2}}\right) \\
& +\frac{1}{4 x\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{2 / 3}}\left(5 3 ^ { 1 / 4 } (1 + \frac { b x ^ { 2 } } { a }) ^ { 4 / 3 } \left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 /}\right.\right. \\
& \left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}
\end{aligned}
$$

$$
\left.{ }^{3}\right) \text { EllipticE }\left(\frac{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\sqrt{3}}{1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}}, 2 I-\mathrm{I} \sqrt{3}\right) \sqrt{\left.\frac{1+\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}+\left(1+\frac{b x^{2}}{a}\right)^{2 / 3}}{\left(1-\left(1+\frac{b x^{2}}{a}\right)^{1 / 3}-\sqrt{3}\right)^{2}}\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)}
$$

Result(type 8, 86 leaves):

$$
-\frac{\left(b x^{2}+a\right)^{2}}{a^{2} x\left(\left(b x^{2}+a\right)^{2}\right)^{2 / 3}}+\frac{\left(\int \frac{b x^{2}-2 a}{3 a^{2}\left(x^{2}+\frac{a}{b}\right)\left(b x^{2}+a\right)^{1 / 3}} \mathrm{~d} x\right)\left(b x^{2}+a\right)^{4 / 3}}{\left(\left(b x^{2}+a\right)^{2}\right)^{2 / 3}}
$$

Problem 208: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x)^{13 / 2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 323 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{11 d^{3}(d x)^{7 / 2}}{16 b^{2} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{d(d x)^{11 / 2}}{4 b\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{77 d^{5}(d x)^{3 / 2}\left(b x^{2}+a\right)}{48 b^{3} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{77 a^{3 / 4} d^{13 / 2}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{64 b^{15 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
& -\frac{77 a^{3 / 4} d^{13 / 2}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{128 b^{15} / 4 \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{77 a^{3 / 4} d^{13 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{128 b^{15 / 4 \sqrt{\left(b x^{2}+a\right)^{2}}}} \\
& +\frac{77 a^{3 / 4} d^{13 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{\left(b x^{2}+a\right)^{2}}\right.}{}
\end{aligned}
$$

Result(type 3, 669 leaves):

$$
\begin{aligned}
& -\frac{1}{384\left(\frac{d^{2} a}{b}\right)^{1 / 4} b^{4}\left(\left(b x^{2}+a\right)^{2}\right)^{3 / 2}}\left(462 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a b^{2} d^{4}+462 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a b^{2} d^{4}\right. \\
& +231 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{4} a b^{2} d^{4}-256\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{3 / 2} x^{4} b^{3} d^{2} \\
& +924 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{2} b d^{4}+924 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{2} b d^{4} \\
& +462 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{2} a^{2} b d^{4}-456\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{7 / 2} a b^{2}-512\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{3 / 2} x^{2} a b^{2} d^{2} \\
& +462 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{3} d^{4}+462 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{3} d^{4} \\
& \left.\left.+231 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) a^{3} d^{4}-616\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{3 / 2} a^{2} b d^{2}\right) d^{3}\left(b x^{2}+a\right)\right)
\end{aligned}
$$

Problem 209: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x)^{9 / 2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 292 leaves, 13 steps):
$-\frac{7 d^{3}(d x)^{3 / 2}}{16 b^{2} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{d(d x)^{7 / 2}}{4 b\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{21 d^{9 / 2}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{64 a^{1 / 4} b^{11 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}$

$$
\begin{aligned}
& +\frac{21 d^{9 / 2}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{64 a^{1 / 4} b^{11 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{21 d^{9 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{128 a^{1 / 4} b^{11 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
& -\frac{21 d^{9 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}+a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{128 a^{1 / 4} b^{11 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}
\end{aligned}
$$

Result(type 3, 602 leaves):

$$
\begin{aligned}
& \frac{1}{128\left(\frac{d^{2} a}{b}\right)^{1 / 4} b^{3}\left(\left(b x^{2}+a\right)^{2}\right)^{3 / 2}}\left(\left(42 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} b^{2} d^{4}+42 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} b^{2} d^{4}\right.\right. \\
& +21 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{4} b^{2} d^{4}+84 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a b d^{4} \\
& +84 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a b d^{4}+42 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{2} a b d^{4}-88\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{7 / 2} b^{2} \\
& +42 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{2} d^{4}+42 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{2} d^{4} \\
& \left.\left.+21 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) a^{2} d^{4}-56\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{3 / 2} a b d^{2}\right) d\left(b x^{2}+a\right)\right)
\end{aligned}
$$

Problem 210: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x)^{3 / 2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 293 leaves, 13 steps):
$-\frac{3 d^{3 / 2}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{}+\frac{3 d^{3 / 2}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{}$

$$
64 a^{7 / 4} b^{5 / 4} \sqrt{\left(b x^{2}+a\right)^{2}} \quad 64 a^{7 / 4} b^{5 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}
$$

$-\frac{3 d^{3 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{128 a^{7 / 4} b^{5 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{3 d^{3 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}+a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{128 a^{7 / 4} b^{5 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}$

$$
+\frac{d \sqrt{d x}}{16 a b \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{d \sqrt{d x}}{4 b\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}}
$$

Result(type 3, 667 leaves):
$\frac{1}{128 d b a^{2}\left(\left(b x^{2}+a\right)^{2}\right)^{3 / 2}}\left(\left(6 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2}\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{4} b^{2} d^{2}\right.\right.$
$+6 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2}\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{4} b^{2} d^{2}+3 \sqrt{2} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right)\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{4} b^{2} d^{2}$
$+12 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2}\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{2} a b d^{2}+12 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2}\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{2} a b d^{2}$
$+6 \sqrt{2} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right)\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{2} a b d^{2}+6 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2}\left(\frac{d^{2} a}{b}\right)^{1 / 4} a^{2} d^{2}$
$+6 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2}\left(\frac{d^{2} a}{b}\right)^{1 / 4} a^{2} d^{2}+3 \sqrt{2} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right)\left(\frac{d^{2} a}{b}\right)^{1 / 4} a^{2} d^{2}+8(d x)^{5 / 2} a b$
$\left.\left.-24 \sqrt{d x} a^{2} d^{2}\right)\left(b x^{2}+a\right)\right)$

Problem 212: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x)^{17 / 2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 358 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{385 d^{7}(d x)^{3 / 2}}{1024 b^{4} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{d(d x)^{15 / 2}}{8 b\left(b x^{2}+a\right)^{3} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{5 d^{3}(d x)^{11 / 2}}{32 b^{2}\left(b x^{2}+a\right)^{2} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{55 d^{5}(d x)^{7 / 2}}{256 b^{3}\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}} \\
& -\frac{1155 d^{17 / 2}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{1 / 4} b^{19 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{1155 d^{17 / 2}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4 \sqrt{2} \sqrt{d x}}}{\left.a^{1 / 4 \sqrt{d}}\right) \sqrt{2}}\right.}{4096 a^{1 / 4} b^{19 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
& +\frac{1155 d^{17 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{1 / 4} b^{19 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
& -\frac{1155 d^{17 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}+a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{1 / 4} b^{19 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}
\end{aligned}
$$

Result(type 3, 1030 leaves):
$\frac{1}{8192\left(\frac{d^{2} a}{b}\right)^{1 / 4} b^{5}\left(\left(b x^{2}+a\right)^{2}\right)^{5 / 2}}\left(\left(2310 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{8} b^{4} d^{8}+2310 \arctan \left(\frac{\left.\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}\right)}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}} \sqrt{2}^{1 / 4} x^{8} b^{4} d^{8}\right.\right.\right.$ $+1155 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{8} b^{4} d^{8}+9240 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{6} a b^{3} d^{8}$ $+9240 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{6} a b^{3} d^{8}+4620 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{6} a b^{3} d^{8}$ $-7144\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{15 / 2} b^{4}+13860 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{8}+13860 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{8}$

$$
\begin{aligned}
& +6930 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{4} a^{2} b^{2} d^{8}-14040\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{11 / 2} a b^{3} d^{2} \\
& +9240 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{3} b d^{8}+9240 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{3} b d^{8} \\
& +4620 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{2} a^{3} b d^{8}-11000\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{7 / 2} a^{2} b^{2} d^{4} \\
& +2310 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{4} d^{8}+2310 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{4} d^{8} \\
& \left.\left.+1155 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) a^{4} d^{8}-3080\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{3 / 2} a^{3} b d^{6}\right) d\left(b x^{2}+a\right)\right)
\end{aligned}
$$

Problem 213: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x)^{11 / 2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 361 leaves, 15 steps):

$$
\begin{aligned}
&-\frac{d(d x)^{9 / 2}}{8 b\left(b x^{2}+a\right)^{3} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{3 d^{3}(d x)^{5 / 2}}{32 b^{2}\left(b x^{2}+a\right)^{2} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{45 d^{11 / 2}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{7 / 4} b^{13 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
&+\frac{45 d^{11 / 2}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{7 / 4} b^{13 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{45 d^{11 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{7 / 4} b^{13 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}
\end{aligned}
$$

$$
+\frac{45 d^{11 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}+a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{7 / 4} b^{13 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{15 d^{5} \sqrt{d x}}{1024 a b^{3} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{15 d^{5} \sqrt{d x}}{256 b^{3}\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}}
$$

Result(type 3, 1135 leaves):

$$
\begin{aligned}
& \frac{1}{8192 d b^{3} a^{2}\left(\left(b x^{2}+a\right)^{2}\right)^{5 / 2}}\left(\left(45\left(\frac{d^{2} a}{b}\right)^{1 / 4} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) \sqrt{2} x^{8} b^{4} d^{6}\right.\right. \\
& +90\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{8} b^{4} d^{6}+90\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{8} b^{4} d^{6} \\
& +180\left(\frac{d^{2} a}{b}\right)^{1 / 4} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) \sqrt{2} x^{6} a b^{3} d^{6}+360\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{6} a b^{3} d^{6} \\
& +360\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{6} a b^{3} d^{6}+270\left(\frac{d^{2} a}{b}\right)^{1 / 4} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{6} \\
& +540\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{6}+540\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{6} \\
& +120(d x)^{13 / 2} a b^{3}+180\left(\frac{d^{2} a}{b}\right)^{1 / 4} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) \sqrt{2} x^{2} a^{3} b d^{6} \\
& +360\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{3} b d^{6}+360\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{3} b d^{6}
\end{aligned}
$$

$$
\begin{aligned}
& -1912(d x)^{9 / 2} a^{2} b^{2} d^{2}+45\left(\frac{d^{2} a}{b}\right)^{1 / 4} \ln \left(\frac{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{\left.d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}\right)} \sqrt{2} a^{4} d^{6}\right. \\
& +90\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{4} d^{6}+90\left(\frac{d^{2} a}{b}\right)^{1 / 4} \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{4} d^{6}-1368(d x)^{5} / 2 a^{3} b d^{4} \\
& \left.-360 \sqrt{d x} a^{4} d^{6}\right)\left(b x^{2}+a\right)
\end{aligned}
$$

Problem 214: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x)^{5 / 2}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 361 leaves, 15 steps):

$$
\begin{aligned}
\frac{45 d(d x)^{3 / 2}}{1024 a^{3} b \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{d(d x)^{3 / 2}}{8 b\left(b x^{2}+a\right)^{3} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{d(d x)^{3 / 2}}{32 a b\left(b x^{2}+a\right)^{2} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{9 d(d x)^{3 / 2}}{256 a^{2} b\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}} \\
-\frac{45 d^{5 / 2}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{13 / 4} b^{7 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{45 d^{5 / 2}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{13 / 4} b^{7 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
+\frac{45 d^{5 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{13 / 4} b^{7 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{45 d^{5 / 2}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}+a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{13 / 4} b^{7 / 4} \sqrt{\left(b x^{2}+a\right)^{2}}}
\end{aligned}
$$

Result(type 3, 1035 leaves):
$\frac{1}{8192 d^{5}\left(\frac{d^{2} a}{b}\right)^{1 / 4} b^{2} a^{3}\left(\left(b x^{2}+a\right)^{2}\right)^{5 / 2}}\left(\operatorname{sarctan}\left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{8} b^{4} d^{8}+90 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{8} b^{4} d^{8}\right.$

$$
\begin{aligned}
& +45 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{8} b^{4} d^{8}+360\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{15 / 2} b^{4}+360 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{6} a b^{3} d^{8} \\
& +360 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{6} a b^{3} d^{8}+180 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{6} a b^{3} d^{8} \\
& +1368\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{11 / 2} a b^{3} d^{2}+540 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{8}+540 \arctan \left(\frac{\left.\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}\right)}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{4} a^{2} b^{2} d^{8} \\
& +270 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{4} a^{2} b^{2} d^{8}+1912\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{7 / 2} a^{2} b^{2} d^{4} \\
& +360 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{3} b d^{8}+360 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} x^{2} a^{3} b d^{8} \\
& +180 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{2} a^{3} b d^{8}-120\left(\frac{d^{2} a}{b}\right)^{1 / 4}(d x)^{3 / 2} a^{3} b d^{6}+90 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right)^{2} a^{4} d^{8} \\
& \left.\left.+90 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{2} a^{4} d^{8}+45 \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) a^{4} d^{8}\right)\left(b x^{2}+a\right)\right)
\end{aligned}
$$

Problem 215: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(d x)^{3 / 2}\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 391 leaves, 16 steps):

$$
\begin{gathered}
\frac{3315 b^{1 / 4}\left(b x^{2}+a\right) \arctan \left(1-\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{21 / 4} d^{3 / 2} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{3315 b^{1 / 4}\left(b x^{2}+a\right) \arctan \left(1+\frac{b^{1 / 4} \sqrt{2} \sqrt{d x}}{a^{1 / 4} \sqrt{d}}\right) \sqrt{2}}{4096 a^{21 / 4} d^{3 / 2} \sqrt{\left(b x^{2}+a\right)^{2}}} \\
-\frac{3315 b^{1 / 4}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}-a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{21 / 4} d^{3 / 2} \sqrt{\left(b x^{2}+a\right)^{2}}}
\end{gathered}
$$

$$
+\frac{3315 b^{1 / 4}\left(b x^{2}+a\right) \ln \left(\sqrt{a} \sqrt{d}+x \sqrt{b} \sqrt{d}+a^{1 / 4} b^{1 / 4} \sqrt{2} \sqrt{d x}\right) \sqrt{2}}{8192 a^{21 / 4} d^{3 / 2} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{663}{1024 a^{4} d \sqrt{d x} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{1}{8 a d\left(b x^{2}+a\right)^{3} \sqrt{d x} \sqrt{\left(b x^{2}+a\right)^{2}}}
$$

$$
+\frac{17}{96 a^{2} d\left(b x^{2}+a\right)^{2} \sqrt{d x} \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{221}{768 a^{3} d\left(b x^{2}+a\right) \sqrt{d x} \sqrt{\left(b x^{2}+a\right)^{2}}}-\frac{3315\left(b x^{2}+a\right)}{1024 a^{5} d \sqrt{d x} \sqrt{\left(b x^{2}+a\right)^{2}}}
$$

Result(type 3, 1065 leaves):
$-\frac{1}{24576 d \sqrt{d x}\left(\frac{d^{2} a}{b}\right)^{1 / 4} a^{5}\left(\left(b x^{2}+a\right)^{2}\right)^{5 / 2}}\left(\left(19890 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{8} b^{4}\right.\right.$
$+19890 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{8} b^{4}+9945 \sqrt{d x} \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{8} b^{4}$
$+79560\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{8} b^{4}+79560 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{6} a b^{3}+79560 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{6} a b^{3}$
$+39780 \sqrt{d x} \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{6} a b^{3}+302328\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{6} a b^{3}$
$+119340 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{4} a^{2} b^{2}+119340 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{4} a^{2} b^{2}$

$$
\begin{aligned}
& +59670 \sqrt{d x} \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{4} a^{2} b^{2}+422552\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{4} a^{2} b^{2} \\
& +79560 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{2} a^{3} b+79560 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} x^{2} a^{3} b \\
& +39780 \sqrt{d x} \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) x^{2} a^{3} b+252008\left(\frac{d^{2} a}{b}\right)^{1 / 4} x^{2} a^{3} b \\
& +19890 \arctan \left(\frac{\sqrt{2} \sqrt{d x}+\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} a^{4}+19890 \arctan \left(\frac{\sqrt{2} \sqrt{d x}-\left(\frac{d^{2} a}{b}\right)^{1 / 4}}{\left(\frac{d^{2} a}{b}\right)^{1 / 4}}\right) \sqrt{d x} \sqrt{2} a^{4} \\
& \left.\left.+9945 \sqrt{d x} \sqrt{2} \ln \left(\frac{d x-\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}{d x+\left(\frac{d^{2} a}{b}\right)^{1 / 4} \sqrt{d x} \sqrt{2}+\sqrt{\frac{d^{2} a}{b}}}\right) a^{4}+49152\left(\frac{d^{2} a}{b}\right)^{1 / 4} a^{4}\right)\left(b x^{2}+a\right)\right)
\end{aligned}
$$

Problem 217: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 60 leaves, 2 steps):

$$
\frac{(d x)^{1+m}\left(b x^{2}+a\right) \text { hypergeom }\left(\left[5, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-\frac{b x^{2}}{a}\right)}{a^{5} d(1+m) \sqrt{\left(b x^{2}+a\right)^{2}}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(d x)^{m}}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

[^0]$$
\int \frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 5, 64 leaves, 3 steps):

$$
\frac{b\left(b x^{2}+a\right)\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p} \text { hypergeom }\left([2,1+2 p],[2+2 p], 1+\frac{b x^{2}}{a}\right)}{2 a^{2}(1+2 p)}
$$

Result(type 8, 26 leaves):

$$
\int \frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p}}{x^{3}} \mathrm{~d} x
$$

Problem 219: Unable to integrate problem.

$$
\int x^{2}\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 58 leaves, 2 steps):

$$
\frac{x^{3}\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p} \text { hypergeom }\left(\left[\frac{3}{2},-2 p\right],\left[\frac{5}{2}\right],-\frac{b x^{2}}{a}\right)}{3\left(1+\frac{b x^{2}}{a}\right)^{2 p}}
$$

Result(type 8, 26 leaves):

$$
\int x^{2}\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p} \mathrm{~d} x
$$

Problem 220: Unable to integrate problem.

$$
\int \frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 5, 58 leaves, 2 steps):

$$
-\frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p} \text { hypergeom }\left(\left[-\frac{3}{2},-2 p\right],\left[-\frac{1}{2}\right],-\frac{b x^{2}}{a}\right)}{3 x^{3}\left(1+\frac{b x^{2}}{a}\right)^{2 p}}
$$

Result(type 8, 26 leaves):

$$
\int \frac{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{p}}{x^{4}} \mathrm{~d} x
$$

Problem 231: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{3}\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 155 leaves, 8 steps):

$$
\frac{3 a c-b^{2}}{a^{2}\left(-4 a c+b^{2}\right) x^{2}}+\frac{c x^{2} b-2 a c+b^{2}}{2 a\left(-4 a c+b^{2}\right) x^{2}\left(c x^{4}+b x^{2}+a\right)}-\frac{\left(6 a^{2} c^{2}-6 a b^{2} c+b^{4}\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{a^{3}\left(-4 a c+b^{2}\right)^{3 / 2}}-\frac{2 b \ln (x)}{a^{3}}+\frac{b \ln \left(c x^{4}+b x^{2}+a\right)}{2 a^{3}}
$$

Result(type 3, 568 leaves):

$$
\begin{aligned}
& -\frac{c^{2} x^{2}}{a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{c x^{2} b^{2}}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{3 b c}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{b^{3}}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{2 c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b}{a^{2}\left(4 a c-b^{2}\right)}-\frac{\ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{3}}{2 a^{3}\left(4 a c-b^{2}\right)}-\frac{6 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) c^{2}}{a \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}} \\
& +\frac{6 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{2} c}{a^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}-\frac{\arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{4}}{a^{3} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}-\frac{1}{2 a^{2} x^{2}}-\frac{2 b \ln (x)}{a^{3}}
\end{aligned}
$$

Problem 232: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{8}}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 284 leaves, 6 steps):

$$
\begin{array}{r}
\frac{\left(-10 a c+3 b^{2}\right) x}{2 c^{2}\left(-4 a c+b^{2}\right)}-\frac{b x^{3}}{2 c\left(-4 a c+b^{2}\right)}+\frac{x^{5}\left(b x^{2}+2 a\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)} \\
-\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(3 b^{3}-13 a b c+\frac{-20 a^{2} c^{2}+19 a b^{2} c-3 b^{4}}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4 c^{5 / 2}\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
-\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(3 b^{3}-13 a b c+\frac{20 a^{2} c^{2}-19 a b^{2} c+3 b^{4}}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4 c^{5 / 2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{array}
$$

Result(type ?, 2279 leaves): Display of huge result suppressed!
Problem 233: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{5}}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 122 leaves, 5 steps):

$$
\frac{x^{2}\left(b x^{2}+2 a\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{3 a b+\left(2 a c+b^{2}\right) x^{2}}{2\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}-\frac{\left(2 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{5 / 2}}
$$

Result(type 3, 269 leaves):

$$
\begin{aligned}
& \frac{\frac{c\left(2 a c+b^{2}\right) x^{6}}{16 a^{2} c^{2}-8 a b^{2} c+b^{4}}+\frac{3 b\left(2 a c+b^{2}\right) x^{4}}{2\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{a\left(2 a c-5 b^{2}\right) x^{2}}{16 a^{2} c^{2}-8 a b^{2} c+b^{4}}+\frac{3 a^{2} b}{16 a^{2} c^{2}-8 a b^{2} c+b^{4}}}{2\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{2 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a c}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) \sqrt{4 a c-b^{2}}} \\
& \quad+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{2}}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) \sqrt{4 a c-b^{2}}}
\end{aligned}
$$

Problem 235: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 188 leaves, 9 steps):

$$
\begin{aligned}
& \frac{c x^{2} b-2 a c+b^{2}}{4 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{2 b^{4}-15 a b^{2} c+16 a^{2} c^{2}+2 b c\left(-7 a c+b^{2}\right) x^{2}}{4 a^{2}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}+\frac{b\left(30 a^{2} c^{2}-10 a b^{2} c+b^{4}\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\left.\sqrt{-4 a c+b^{2}}\right)}+\frac{\ln (x)}{a^{3}}\right.}{\quad-\frac{\ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{3}}}
\end{aligned}
$$

Result(type 3, 1199 leaves):

$$
\begin{aligned}
&-\frac{7 c^{3} b x^{6}}{2 a\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{c^{2} b^{3} x^{6}}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{4 c^{3} x^{4}}{\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
&-\frac{29 c^{2} x^{4} b^{2}}{4 a\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{c x^{4} b^{4}}{a^{2}\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{b x^{2} c^{2}}{2\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
&-\frac{3 b^{3} x^{2} c}{a\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{b^{5} x^{2}}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{3 c^{2}}{\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
&-\frac{21 b^{2} c}{4\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{3 b^{4}}{4 a\left(c x^{4}+b x^{2}+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{4 c^{2} \ln \left(\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{4}+b x^{2}+a\right)\right)}{a\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{2 c \ln \left(\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{2}}{a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& -\frac{\ln \left(\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{4}}{4 a^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{15 \arctan \left(\frac{2 c x^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 a^{5} c^{5}-1280 a^{4} b^{2} c^{4}+640 a^{3} b^{4} c^{3}-160 a^{2} b^{6} c^{2}+20 a b^{8} c-b^{10}}}\right) b c^{2}}{a \sqrt{1024 a^{5} c^{5}-1280 a^{4} b^{2} c^{4}+640 a^{3} b^{4} c^{3}-160 a^{2} b^{6} c^{2}+20 a b^{8} c-b^{10}}} \\
& +\frac{5 \arctan \left(\frac{2 c x^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 a^{5} c^{5}-1280 a^{4} b^{2} c^{4}+640 a^{3} b^{4} c^{3}-160 a^{2} b^{6} c^{2}+20 a b^{8} c-b^{10}}}\right) b^{3} c}{a^{2} \sqrt{1024 a^{5} c^{5}-1280 a^{4} b^{2} c^{4}+640 a^{3} b^{4} c^{3}-160 a^{2} b^{6} c^{2}+20 a b^{8} c-b^{10}}} \\
& \\
& -\frac{\arctan \left(\frac{2 c x^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 a^{5} c^{5}-1280 a^{4} b^{2} c^{4}+640 a^{3} b^{4} c^{3}-160 a^{2} b^{6} c^{2}+20 a b^{8} c-b^{10}}}\right){b^{5}}_{2 a^{3} \sqrt{1024 a^{5} c^{5}-1280 a^{4} b^{2} c^{4}+640 a^{3} b^{4} c^{3}-160 a^{2} b^{6} c^{2}+20 a b^{8} c-b^{10}}}+\frac{\ln (x)}{a^{3}}}{}
\end{aligned}
$$

Problem 236: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{10}}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 353 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{3 b\left(-8 a c+b^{2}\right) x}{8 c^{2}\left(-4 a c+b^{2}\right)^{2}}+\frac{\left(-28 a c+b^{2}\right) x^{3}}{8 c\left(-4 a c+b^{2}\right)^{2}}+\frac{x^{7}\left(b x^{2}+2 a\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{x^{5}\left(12 a b-\left(-28 a c+b^{2}\right) x^{2}\right)}{8\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)} \\
& +\frac{3 \arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b^{4}-9 a b^{2} c+28 a^{2} c^{2}+\frac{-44 a^{2} b c^{2}+11 a b^{3} c-b^{5}}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{16 c^{5} / 2\left(-4 a c+b^{2}\right)^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& +\frac{3 \arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b^{4}-9 a b^{2} c+28 a^{2} c^{2}+\frac{44 a^{2} b c^{2}-11 a b^{3} c+b^{5}}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{16 c^{5} / 2\left(-4 a c+b^{2}\right)^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type ?, 5424 leaves): Display of huge result suppressed!
Problem 240: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{x^{4}-2 x^{2}+2} d x
$$

Optimal(type 3, 132 leaves, 9 steps):
$-\frac{\arctan \left(\frac{-2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}}}{4}+\frac{\arctan \left(\frac{2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}}}{4}+\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{2+2 \sqrt{2}}\right)}{4 \sqrt{2+2 \sqrt{2}}}$

$$
-\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{2+2 \sqrt{2}}\right)}{4 \sqrt{2+2 \sqrt{2}}}
$$

Result(type 3, 307 leaves):
$-\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln \left(x^{2}+\sqrt{2}+x \sqrt{2+2 \sqrt{2}}\right)}{8}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}}+\frac{\sqrt{2+2 \sqrt{2}} \ln \left(x^{2}+\sqrt{2}+x \sqrt{2+2 \sqrt{2}}\right)}{8}$

$$
\begin{aligned}
& -\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}}+\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln \left(x^{2}+\sqrt{2}-x \sqrt{2+2 \sqrt{2}}\right)}{8}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 x-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}} \\
& -\frac{\sqrt{2+2 \sqrt{2}} \ln \left(x^{2}+\sqrt{2}-x \sqrt{2+2 \sqrt{2}}\right)}{8}-\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 x-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}}
\end{aligned}
$$

Problem 243: Result more than twice size of optimal antiderivative.

$$
\int x^{5}\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 178 leaves, 7 steps):
$\frac{\left(-4 a c+7 b^{2}\right)\left(2 c x^{2}+b\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2}}{384 c^{3}}-\frac{7 b\left(c x^{4}+b x^{2}+a\right)^{5 / 2}}{120 c^{2}}+\frac{x^{2}\left(c x^{4}+b x^{2}+a\right)^{5 / 2}}{12 c}$

$$
+\frac{\left(-4 a c+b^{2}\right)^{2}\left(-4 a c+7 b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{2 \sqrt{c} \sqrt{c x^{4}+b x^{2}+a}}\right)}{2048 c^{9 / 2}}-\frac{\left(-4 a c+b^{2}\right)\left(-4 a c+7 b^{2}\right)\left(2 c x^{2}+b\right) \sqrt{c x^{4}+b x^{2}+a}}{1024 c^{4}}
$$

Result(type 3, 431 leaves):
$\frac{a^{2} x^{2} \sqrt{c x^{4}+b x^{2}+a}}{32 c}-\frac{27 a^{2} b \sqrt{c x^{4}+b x^{2}+a}}{320 c^{2}}+\frac{9 a^{2} b^{2} \ln \left(\frac{\frac{b}{2}+c x^{2}}{\sqrt{c}}+\sqrt{c x^{4}+b x^{2}+a}\right)}{128 c^{5 / 2}}+\frac{c x^{10} \sqrt{c x^{4}+b x^{2}+a}}{12}+\frac{13 b x^{8} \sqrt{c x^{4}+b x^{2}+a}}{120}$

$$
\begin{aligned}
& -\frac{7 b^{5} \sqrt{c x^{4}+b x^{2}+a}}{1024 c^{4}}+\frac{7 a x^{6} \sqrt{c x^{4}+b x^{2}+a}}{48}-\frac{15 b^{4} a \ln \left(\frac{\frac{b}{2}+c x^{2}}{\sqrt{c}}+\sqrt{c x^{4}+b x^{2}+a}\right)}{512 c^{7 / 2}}-\frac{9 b^{2} a x^{2} \sqrt{c x^{4}+b x^{2}+a}}{320 c^{2}} \\
& +\frac{3 b a x^{4} \sqrt{c x^{4}+b x^{2}+a}}{160 c}-\frac{a^{3} \ln \left(\frac{\frac{b}{2}+c x^{2}}{\sqrt{c}}+\sqrt{c x^{4}+b x^{2}+a}\right)}{32 c^{3 / 2}}+\frac{b^{2} x^{6} \sqrt{c x^{4}+b x^{2}+a}}{320 c}-\frac{7 b^{3} x^{4} \sqrt{c x^{4}+b x^{2}+a}}{1920 c^{2}}+\frac{7 b^{4} x^{2} \sqrt{c x^{4}+b x^{2}+a}}{1536 c^{3}} \\
& +\frac{7 b^{6} \ln \left(\frac{\frac{b}{2}+c x^{2}}{\sqrt{c}}+\sqrt{c x^{4}+b x^{2}+a}\right)}{2048 c^{9 / 2}}+\frac{19 b^{3} a \sqrt{c x^{4}+b x^{2}+a}}{384 c^{3}}
\end{aligned}
$$

Problem 245: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}}{x^{11}} \mathrm{~d} x
$$

Optimal(type 3, 140 leaves, 6 steps):

$$
\begin{aligned}
& \frac{b\left(b x^{2}+2 a\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2}}{32 a^{2} x^{8}}-\frac{\left(c x^{4}+b x^{2}+a\right)^{5 / 2}}{10 a x^{10}}+\frac{3 b\left(-4 a c+b^{2}\right)^{2} \operatorname{arctanh}\left(\frac{b x^{2}+2 a}{2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}\right)}{512 a^{7 / 2}} \\
& \quad-\frac{3 b\left(-4 a c+b^{2}\right)\left(b x^{2}+2 a\right) \sqrt{c x^{4}+b x^{2}+a}}{256 a^{3} x^{4}}
\end{aligned}
$$

Result(type 3, 336 leaves):

$$
\begin{aligned}
& -\frac{a \sqrt{c x^{4}+b x^{2}+a}}{10 x^{10}}-\frac{11 b \sqrt{c x^{4}+b x^{2}+a}}{80 x^{8}}-\frac{b^{2} \sqrt{c x^{4}+b x^{2}+a}}{160 a x^{6}}+\frac{b^{3} \sqrt{c x^{4}+b x^{2}+a}}{128 a^{2} x^{4}}-\frac{3 b^{4} \sqrt{c x^{4}+b x^{2}+a}}{256 a^{3} x^{2}} \\
& +\frac{3 b^{5} \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{512 a^{7 / 2}}-\frac{3 b^{3} c \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{64 a^{5 / 2}}+\frac{5 b^{2} c \sqrt{c x^{4}+b x^{2}+a}}{64 a^{2} x^{2}}-\frac{7 b c \sqrt{c x^{4}+b x^{2}+a}}{160 a x^{4}} \\
& +\frac{3 b c^{2} \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{32 a^{3 / 2}}-\frac{c \sqrt{c x^{4}+b x^{2}+a}}{5 x^{6}}-\frac{c^{2} \sqrt{c x^{4}+b x^{2}+a}}{10 a x^{2}}
\end{aligned}
$$

Problem 246: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}}{x^{13}} \mathrm{~d} x
$$

Optimal(type 3, 190 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{\left(-4 a c+7 b^{2}\right)\left(b x^{2}+2 a\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2}}{384 a^{3} x^{8}}-\frac{\left(c x^{4}+b x^{2}+a\right)^{5 / 2}}{12 a x^{12}}+\frac{7 b\left(c x^{4}+b x^{2}+a\right)^{5 / 2}}{120 a^{2} x^{10}} \\
& -\frac{\left(-4 a c+b^{2}\right)^{2}\left(-4 a c+7 b^{2}\right) \operatorname{arctanh}\left(\frac{b x^{2}+2 a}{2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}\right)}{2048 a^{9 / 2}}+\frac{\left(-4 a c+b^{2}\right)\left(-4 a c+7 b^{2}\right)\left(b x^{2}+2 a\right) \sqrt{c x^{4}+b x^{2}+a}}{1024 a^{4} x^{4}}
\end{aligned}
$$

Result(type 3, 456 leaves):

$$
\begin{aligned}
& -\frac{a \sqrt{c x^{4}+b x^{2}+a}}{12 x^{12}}-\frac{13 b \sqrt{c x^{4}+b x^{2}+a}}{120 x^{10}}-\frac{7 c \sqrt{c x^{4}+b x^{2}+a}}{48 x^{8}}-\frac{9 b^{2} c^{2} \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{128 a^{5 / 2}}-\frac{3 b c \sqrt{c x^{4}+b x^{2}+a}}{160 a x^{6}} \\
& +\frac{27 b c^{2} \sqrt{c x^{4}+b x^{2}+a}}{320 a^{2} x^{2}}+\frac{15 b^{4} c \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{512 a^{7 / 2}}-\frac{19 b^{3} c \sqrt{c x^{4}+b x^{2}+a}}{384 a^{3} x^{2}}+\frac{9 b^{2} c \sqrt{c x^{4}+b x^{2}+a}}{320 a^{2} x^{4}} \\
& \\
& -\frac{7 b^{4} \sqrt{c x^{4}+b x^{2}+a}}{1536 a^{3} x^{4}}+\frac{7 b^{5} \sqrt{c x^{4}+b x^{2}+a}}{1024 a^{4} x^{2}} \\
& +\frac{c^{3} \ln \left(\frac{2 a+b x^{6} \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{2048 a^{9 / 2}}-\frac{c^{2} \sqrt{c x^{4}+b x^{2}+a}}{32 a x^{4}}\right.}{x^{2}}-\frac{b^{2} \sqrt{c x^{4}+b x^{2}+a x^{2}+a}}{320 a x^{8}}+\frac{7 b^{3} \sqrt{c x^{4}+b x^{2}+a}}{1920 a^{2} x^{6}}
\end{aligned}
$$

Problem 276: Result is not expressed in closed-form.

$$
\int \frac{x^{7 / 2}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 309 leaves, 9 steps):

$$
\begin{aligned}
& \frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{2 c^{5 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}+\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{2 c^{5 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& +\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{2 c^{5 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}+\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{2 c^{5 / 4\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}}+\frac{2 \sqrt{x}}{c}
\end{aligned}
$$

Result(type 7, 63 leaves):

$$
\frac{2 \sqrt{x}}{c}+\frac{\sum_{R=\operatorname{RootOf}\left(c _\not Z^{8}+b \not Z^{4}+a\right)} \frac{\left(-R^{4} b-a\right) \ln \left(\sqrt{x}-__{R}\right)}{2 _R^{7} c+R_{-} R^{3} b}}{2 c}
$$

Problem 277: Result is not expressed in closed-form.

$$
\int \frac{1}{\sqrt{x}\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 251 leaves, 8 steps):

$$
\begin{aligned}
& \frac{2^{3 / 4} c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \sqrt{-4 a c+b^{2}}}+\frac{2^{3 / 4} c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \sqrt{-4 a c+b^{2}}}-\frac{2^{3 / 4} c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{\sqrt{-4 a c+b^{2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}} \\
& \quad-\frac{2^{3 / 4} c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{\sqrt{-4 a c+b^{2}}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}
\end{aligned}
$$

Result(type 7, 41 leaves):

$$
\frac{\left.\sum_{R=\operatorname{RootOf}\left(c _\not Z^{8}+b\right.} Z_{\left.Z^{4}+a\right)} \frac{\ln \left(\sqrt{x}-__{-} R\right)}{2 R^{7} c+R_{-}^{3} b}\right)}{2}
$$

Problem 278: Result is not expressed in closed-form.

$$
\int \frac{x^{9 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 377 leaves, 9 steps):

$$
\begin{aligned}
& \frac{x^{3 / 2}\left(b x^{2}+2 a\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{-12 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{8 c^{3 / 4}\left(-4 a c+b^{2}\right)\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}} \\
& -\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{-12 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{8 c^{3 / 4}\left(-4 a c+b^{2}\right)\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}+\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b^{2}+12 a c+b \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{8 c^{3 / 4}\left(-4 a c+b^{2}\right)^{3 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
\end{aligned}
$$

$$
-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b^{2}+12 a c+b \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{8 c^{3 / 4}\left(-4 a c+b^{2}\right)^{3 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
$$

Result(type 7, 120 leaves):

$$
\frac{2\left(-\frac{b x^{7 / 2}}{4\left(4 a c-b^{2}\right)}-\frac{a x^{3 / 2}}{2\left(4 a c-b^{2}\right)}\right)}{c x^{4}+b x^{2}+a}+\frac{\left.\sum_{R=\operatorname{RootOf}\left(c \not Z^{8}+b Z^{4}+a\right)} \frac{\left(-_R^{6} b+6 _R^{2} a\right) \ln \left(\sqrt{x}-_R\right)}{\left(4 a c-b^{2}\right)\left(2 _R^{7} c+R^{3} b\right)}\right)}{8}
$$

Problem 279: Result is not expressed in closed-form.

$$
\int \frac{x^{5 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 350 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{x^{3 / 2}\left(2 c x^{2}+b\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(4 b-\sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{4\left(-4 a c+b^{2}\right)^{3 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}} \\
& -\frac{c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(4 b-\sqrt{-4 a c+b^{2}}\right) 2^{1 / 4} c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(4 b+\sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{4\left(-4 a c+b^{2}\right)^{3 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}-\frac{4\left(-4 a c+b^{2}\right)^{3 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}{4\left(-4 a c+b^{2}\right)^{3 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
\end{aligned}
$$

Result(type 7, 120 leaves):

$$
\frac{2\left(\frac{c x^{7 / 2}}{2\left(4 a c-b^{2}\right)}+\frac{b x^{3 / 2}}{4\left(4 a c-b^{2}\right)}\right)}{c x^{4}+b x^{2}+a}+\frac{\left.\sum_{R=\operatorname{RootOf}\left(c _Z^{8}+b-Z^{4}+a\right)} \frac{\left(2 _R^{6} c-3 _R^{2} b\right) \ln \left(\sqrt{x}-_R\right)}{\left(4 a c-b^{2}\right)\left(2 _R^{7} c+R^{3} b\right)}\right)}{8}
$$

Problem 280: Result is not expressed in closed-form.

$$
\int \frac{x^{3 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 350 leaves, 9 steps):

$$
\begin{aligned}
& \frac{c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(3+\frac{4 b}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4\left(-4 a c+b^{2}\right)\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}+\frac{c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(3+\frac{4 b}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4\left(-4 a c+b^{2}\right)\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& +\frac{c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(3-\frac{4 b}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{+\frac{4\left(-4 a c+b^{2}\right)\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}{c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(3-\frac{4 b}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}} \begin{array}{l}
4\left(-4 a c+b^{2}\right)\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}
\end{array} \\
& \quad-\frac{\left(2 c x^{2}+b\right) \sqrt{x}}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}
\end{aligned}
$$

Result(type 7, 117 leaves):

$$
\frac{2\left(\frac{x^{5 / 2} c}{2\left(4 a c-b^{2}\right)}+\frac{\sqrt{x} b}{4\left(4 a c-b^{2}\right)}\right)}{c x^{4}+b x^{2}+a}+\frac{\left.\sum_{R=\operatorname{RootOf}\left(Z^{8} c+Z^{4} b+a\right)} \frac{\left(6 R^{4} c-b\right) \ln \left(\sqrt{x}-R^{2}\right)}{\left(4 a c-b^{2}\right)\left(2_{-} R^{7} c+R^{3} b\right)}\right)}{8}
$$

Problem 281: Result is not expressed in closed-form.

$$
\int \frac{x^{13 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 467 leaves, 10 steps):

$$
\begin{aligned}
& \frac{x^{7 / 2}\left(b x^{2}+2 a\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{x^{3 / 2}\left(24 a b+\left(28 a c+5 b^{2}\right) x^{2}\right)}{16\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}+\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{2}+28 a c+\frac{-172 a b c-5 b^{3}}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{64 c^{3 / 4}\left(-4 a c+b^{2}\right)^{2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}} \\
&-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{2}+28 a c+\frac{-172 a b c-5 b^{3}}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{64 c^{3 / 4}\left(-4 a c+b^{2}\right)^{2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}} \\
&+\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{3}+172 a b c+\left(28 a c+5 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{64 c^{3 / 4}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}} \\
& \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{3}+172 a b c+\left(28 a c+5 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4} \\
&- \frac{64 c^{3 / 4}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}{}
\end{aligned}
$$

Result(type 7, 241 leaves):

Problem 282: Result is not expressed in closed-form.

$$
\int \frac{x^{9 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 429 leaves, 10 steps):
$\frac{x^{3 / 2}\left(b x^{2}+2 a\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}-\frac{3 x^{3 / 2}\left(8 c x^{2} b-4 a c+5 b^{2}\right)}{16\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}$

$$
\begin{aligned}
& \frac{3 c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(11 b^{2}+20 a c-4 b \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{32\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}} \\
&- 3 c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(11 b^{2}+20 a c-4 b \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4} \\
& 32\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}
\end{aligned}
$$

$$
-\frac{3 c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(11 b^{2}+20 a c+4 b \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{}
$$

$$
32\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}
$$

$$
+\frac{3 c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(11 b^{2}+20 a c+4 b \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{32\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
$$

Result(type 7, 243 leaves):
$\frac{2\left(-\frac{a\left(20 a c+7 b^{2}\right) x^{3 / 2}}{32\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{b\left(28 a c+11 b^{2}\right) x^{7} / 2}{32\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{3\left(4 a c-13 b^{2}\right) c x^{11 / 2}}{32\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{3 b c^{2} x^{15 / 2}}{4\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}}$
$+\frac{3\left(\sum_{R=\operatorname{RootOf}\left(Z^{8} c+Z^{4} b+a\right)} \frac{\left(-8 b c_{-} R^{6}+\left(20 a c+7 b^{2}\right)_{-} R^{2}\right) \ln \left(\sqrt{x}-{ }_{-} R\right)}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(2_{-} R^{7} c+_{-} R^{3} b\right)}\right)}{64}$

Problem 283: Result is not expressed in closed-form.

$$
\int \frac{\sqrt{x}}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 554 leaves, 10 steps):

$$
\frac{x^{3 / 2}\left(c x^{2} b-2 a c+b^{2}\right)}{4 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{x^{3 / 2}\left(5 b^{4}-45 a b^{2} c+52 a^{2} c^{2}+b c\left(-44 a c+5 b^{2}\right) x^{2}\right)}{16 a^{2}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}
$$

$$
\begin{aligned}
& c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{4}-54 a b^{2} c+520 a^{2} c^{2}-b\left(-44 a c+5 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4} \\
&+\frac{64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}{c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{4}-54 a b^{2} c+520 a^{2} c^{2}-b\left(-44 a c+5 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}} \\
& 64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}
\end{aligned}
$$

$$
+\frac{c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{4}-54 a b^{2} c+520 a^{2} c^{2}+b\left(-44 a c+5 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
$$

$$
-\frac{c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(5 b^{4}-54 a b^{2} c+520 a^{2} c^{2}+b\left(-44 a c+5 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{1 / 4}}{64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
$$

Result(type 7, 320 leaves):

$$
\begin{aligned}
& \frac{2\left(\frac{3\left(28 a^{2} c^{2}-23 a b^{2} c+3 b^{4}\right) x^{3 / 2}}{32 a\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{b\left(8 a^{2} c^{2}+36 a b^{2} c-5 b^{4}\right) x^{7 / 2}}{32 a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{c\left(52 a^{2} c^{2}-89 a b^{2} c+10 b^{4}\right) x^{11 / 2}}{32 a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{b c^{2}\left(44 a c-5 b^{2}\right) x^{15 / 2}}{32 a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \\
& +\frac{\sum_{R=\operatorname{RootOf}\left(Z^{8}{ }_{c}+Z^{4} b+a\right)} \frac{\left(b c\left(-44 a c+5 b^{2}\right) R^{6}+\left(260 a^{2} c^{2}-49 a b^{2} c+5 b^{4}\right) _R^{2}\right) \ln (\sqrt{x}-R)}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(2 _R^{7} c+R_{-}^{3} b\right)}}{64 a^{2}}
\end{aligned}
$$

Problem 284: Result is not expressed in closed-form.

$$
\int \frac{1}{\sqrt{x}\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 554 leaves, 10 steps):

$$
\begin{aligned}
& 3 c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(7 b^{4}-66 a b^{2} c+280 a^{2} c^{2}-b\left(-52 a c+7 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{3 / 4} \\
& 64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \\
& +\frac{3 c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(7 b^{4}-66 a b^{2} c+280 a^{2} c^{2}-b\left(-52 a c+7 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{3 / 4}}{64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& -\frac{3 c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(7 b^{4}-66 a b^{2} c+280 a^{2} c^{2}+b\left(-52 a c+7 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{3 / 4}}{64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& -3 c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} \sqrt{x}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(7 b^{4}-66 a b^{2} c+280 a^{2} c^{2}+b\left(-52 a c+7 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) 2^{3 / 4} \\
& 64 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \\
& +\frac{\left(c x^{2} b-2 a c+b^{2}\right) \sqrt{x}}{4 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{\left(7 b^{4}-55 a b^{2} c+60 a^{2} c^{2}+b c\left(-52 a c+7 b^{2}\right) x^{2}\right) \sqrt{x}}{16 a^{2}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}
\end{aligned}
$$

Result(type 7, 315 leaves):

$$
\begin{aligned}
& \frac{2\left(\frac{\left(92 a^{2} c^{2}-79 a b^{2} c+11 b^{4}\right) \sqrt{x}}{32\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a}-\frac{b\left(8 a^{2} c^{2}+44 a b^{2} c-7 b^{4}\right) x^{5} / 2}{32 a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{c\left(60 a^{2} c^{2}-107 a b^{2} c+14 b^{4}\right) x^{9} / 2}{32 a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{b c^{2}\left(52 a c-7 b^{2}\right) x^{13 / 2}}{32 a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}\right)}{\left.3 x^{2}+a\right)^{2}} \\
& \quad+\frac{\sum_{R=\operatorname{RootOf}\left(Z^{8} c+Z^{4} b+a\right)} \frac{\left(b c\left(-52 a c+7 b^{2}\right) R^{4}+140 a^{2} c^{2}-59 a b^{2} c+7 b^{4}\right) \ln (\sqrt{x}-R)}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(2 _R^{7} c+R^{3} b\right)}}{64 a^{2}}
\end{aligned}
$$

Problem 285: Unable to integrate problem.

$$
\int(d x)^{3 / 2} \sqrt{c x^{4}+b x^{2}+a} d x
$$

Optimal(type 6, 121 leaves, 2 steps):

$$
\frac{2(d x)^{5 / 2} \text { AppellF1 }\left(\frac{5}{4},-\frac{1}{2},-\frac{1}{2}, \frac{9}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{5 d \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 122 leaves):

$$
\frac{2\left(5 c x^{2}+2 b\right) x \sqrt{c x^{4}+b x^{2}+a} d^{2}}{45 c \sqrt{d x}}+\frac{\left(\int-\frac{2\left(-10 x^{2} a c+3 b^{2} x^{2}+a b\right)}{45 c \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}} \mathrm{dx}\right) d^{2} \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}}{\sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Problem 286: Unable to integrate problem.

$$
\int(d x)^{3 / 2}\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 6, 122 leaves, 2 steps):

$$
\frac{2 a(d x)^{5 / 2} \text { AppellF1 }\left(\frac{5}{4},-\frac{3}{2},-\frac{3}{2}, \frac{9}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{5 d \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 182 leaves):
$\underline{2\left(195 c^{3} x^{6}+285 c^{2} x^{4} b+455 a c^{2} x^{2}+20 c x^{2} b^{2}+176 a b c-28 b^{3}\right) x \sqrt{c x^{4}+b x^{2}+a} d^{2}}$

$$
+\frac{\left(\int-\frac{4\left(-260 a^{2} c^{2} x^{2}+157 a b^{2} c x^{2}-21 b^{4} x^{2}+44 a^{2} b c-7 a b^{3}\right)}{3315 c^{2} \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}} \mathrm{d} x\right) d^{2} \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}}{\sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Problem 287: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}} \mathrm{~d} x
$$

Optimal(type 6, 121 leaves, 2 steps):

$$
\frac{2 \text { AppellF } 1\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{5}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{d x} \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}{d \sqrt{c x^{4}+b x^{2}+a}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{1}{\sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}} \mathrm{~d} x
$$

Problem 288: Unable to integrate problem.

$$
\int \frac{1}{(d x)^{3 / 2} \sqrt{c x^{4}+b x^{2}+a}} d x
$$

Optimal(type 6, 121 leaves, 2 steps):

$$
-\frac{2 \text { AppellF1 }\left(-\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}{d \sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Result(type 8, 100 leaves):

$$
-\frac{2 \sqrt{c x^{4}+b x^{2}+a}}{a d \sqrt{d x}}+\frac{\left(\int \frac{x\left(3 c x^{2}+b\right)}{a \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}} \mathrm{d} x\right) \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}}{d \sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Problem 289: Unable to integrate problem.

$$
\int \frac{(d x)^{3 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 124 leaves, 2 steps):

$$
\frac{2(d x)^{5 / 2} \text { AppellF1 }\left(\frac{5}{4}, \frac{3}{2}, \frac{3}{2}, \frac{9}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}{5 a d \sqrt{c x^{4}+b x^{2}+a}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{(d x)^{3 / 2}}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 290: Unable to integrate problem.

$$
\int \frac{1}{(d x)^{3 / 2}\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 124 leaves, 2 steps):

$$
2 \text { AppellF1 }\left(-\frac{1}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}
$$

$$
a d \sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}
$$

Result(type 8, 144 leaves):

$$
-\frac{2 \sqrt{c x^{4}+b x^{2}+a}}{a^{2} d \sqrt{d x}}+\frac{\left(\int \frac{x\left(3 c^{2} x^{6}+4 b c x^{4}+2 x^{2} a c+b^{2} x^{2}\right)}{a^{2} c\left(x^{4}+\frac{b x^{2}}{c}+\frac{a}{c}\right) \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}} \mathrm{d} x\right) \sqrt{d x\left(c x^{4}+b x^{2}+a\right)}}{d \sqrt{d x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Problem 292: Unable to integrate problem.

$$
\int(d x)^{m}\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 6, 136 leaves, 2 steps):

$$
\frac{a(d x)^{1+m} \text { AppellF1 }\left(\frac{1}{2}+\frac{m}{2},-\frac{3}{2},-\frac{3}{2}, \frac{3}{2}+\frac{m}{2},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{d(1+m) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 22 leaves):

$$
\int(d x)^{m}\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Problem 293: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 138 leaves, 2 steps):

$$
\frac{(d x)^{1+m} \text { AppellF1 }\left(\frac{1}{2}+\frac{m}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}+\frac{m}{2},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}} \underset{a d(1+m) \sqrt{c x^{4}+b x^{2}+a}}{ }}{\frac{1}{1+\frac{1}{b}}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{(d x)^{m}}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 294: Unable to integrate problem.

$$
\int x^{5}\left(c x^{4}+b x^{2}+a\right)^{p} d x
$$

Optimal(type 5, 208 leaves, 4 steps):

$$
-\frac{b(2+p)\left(c x^{4}+b x^{2}+a\right)^{1+p}}{4 c^{2}(1+p)(3+2 p)}+\frac{x^{2}\left(c x^{4}+b x^{2}+a\right)^{1+p}}{2 c(3+2 p)}
$$

$$
+\frac{2^{-1+p}\left(2 a c-b^{2}(2+p)\right)\left(c x^{4}+b x^{2}+a\right)^{1+p} \operatorname{hypergeom}\left([-p, 1+p],[2+p], \frac{2 c x^{2}+\sqrt{-4 a c+b^{2}}+b}{2 \sqrt{-4 a c+b^{2}}}\right)\left(\frac{-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b}{\sqrt{-4 a c+b^{2}}}\right)^{-1-p}}{c^{2}(1+p)(3+2 p) \sqrt{-4 a c+b^{2}}}
$$

Result (type 8, 20 leaves):

$$
\int x^{5}\left(c x^{4}+b x^{2}+a\right)^{p} \mathrm{~d} x
$$

Problem 295: Unable to integrate problem.

$$
\int x^{3}\left(c x^{4}+b x^{2}+a\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 147 leaves, 3 steps):
$\frac{\left(c x^{4}+b x^{2}+a\right)^{1+p}}{4 c(1+p)}+\frac{2^{-1+p} b\left(c x^{4}+b x^{2}+a\right)^{1+p} \text { hypergeom }\left([-p, 1+p],[2+p], \frac{2 c x^{2}+\sqrt{-4 a c+b^{2}}+b}{2 \sqrt{-4 a c+b^{2}}}\right)\left(\frac{-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b}{\sqrt{-4 a c+b^{2}}}\right)^{-1-p}}{c(1+p) \sqrt{-4 a c+b^{2}}}$
Result(type 8, 20 leaves):

$$
\int x^{3}\left(c x^{4}+b x^{2}+a\right)^{p} \mathrm{~d} x
$$

Problem 296: Unable to integrate problem.

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{p}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 6, 156 leaves, 3 steps):

$$
-\frac{2^{-1+2 p}\left(c x^{4}+b x^{2}+a\right)^{p} \text { AppellF1 }\left(1-2 p,-p,-p, 2-2 p, \frac{-b-\sqrt{-4 a c+b^{2}}}{2 c x^{2}}, \frac{-b+\sqrt{-4 a c+b^{2}}}{2 c x^{2}}\right)}{(1-2 p) x^{2}\left(\frac{2 c x^{2}-\sqrt{-4 a c+b^{2}}+b}{c x^{2}}\right)^{p}\left(\frac{2 c x^{2}+\sqrt{-4 a c+b^{2}}+b}{c x^{2}}\right)^{p}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{p}}{x^{3}} \mathrm{~d} x
$$

Problem 297: Unable to integrate problem.

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{p}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 6, 154 leaves, 3 steps):

$$
-\frac{4^{-1+p}\left(c x^{4}+b x^{2}+a\right)^{p} \text { AppellF1 }\left(2-2 p,-p,-p, 3-2 p, \frac{-b-\sqrt{-4 a c+b^{2}}}{2 c x^{2}}, \frac{-b+\sqrt{-4 a c+b^{2}}}{2 c x^{2}}\right)}{(1-p) x^{4}\left(\frac{2 c x^{2}-\sqrt{-4 a c+b^{2}}+b}{c x^{2}}\right)^{p}\left(\frac{2 c x^{2}+\sqrt{-4 a c+b^{2}}+b}{c x^{2}}\right)^{p}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{p}}{x^{5}} \mathrm{~d} x
$$

Test results for the 109 problems in "1.2.2.3 (d+e $\left.x^{\wedge} 2\right)^{\wedge} m\left(a+b x^{\wedge} 2+c x^{\wedge} 4\right)^{\wedge} p . t x t "$ Problem 2: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2} d+c}{-b x^{4}+a} \mathrm{~d} x
$$

Optimal(type 3, 58 leaves, 3 steps):

$$
\frac{\arctan \left(\frac{b^{1 / 4} x}{a^{1 / 4}}\right)(-d \sqrt{a}+c \sqrt{b})}{2 a^{3 / 4} b^{3 / 4}}+\frac{\operatorname{arctanh}\left(\frac{b^{1 / 4} x}{a^{1 / 4}}\right)(d \sqrt{a}+c \sqrt{b})}{2 a^{3 / 4} b^{3 / 4}}
$$

Result(type 3, 121 leaves):

$$
\frac{c\left(\frac{a}{b}\right)^{1 / 4} \ln \left(\frac{x+\left(\frac{a}{b}\right)^{1 / 4}}{x-\left(\frac{a}{b}\right)^{1 / 4}}\right)}{4 a}+\frac{c\left(\frac{a}{b}\right)^{1 / 4} \arctan \left(\frac{x}{\left(\frac{a}{b}\right)^{1 / 4}}\right)}{2 a}-\frac{d \arctan \left(\frac{x}{\left(\frac{a}{b}\right)^{1 / 4}}\right)}{2 b\left(\frac{a}{b}\right)^{1 / 4}}+\frac{d \ln \left(\frac{x+\left(\frac{a}{b}\right)^{1 / 4}}{\left.x-\left(\frac{a}{b}\right)^{1 / 4}\right)}\right.}{4 b\left(\frac{a}{b}\right)^{1 / 4}}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{-b x^{2}+\sqrt{a} \sqrt{b}}{b x^{4}+a} \mathrm{~d} x
$$

Optimal(type 3, 70 leaves, 3 steps):

$$
-\frac{b^{1 / 4} \ln \left(-a^{1 / 4} b^{1 / 4} x \sqrt{2}+\sqrt{a}+x^{2} \sqrt{b}\right) \sqrt{2}}{4 a^{1 / 4}}+\frac{b^{1 / 4} \ln \left(a^{1 / 4} b^{1 / 4} x \sqrt{2}+\sqrt{a}+x^{2} \sqrt{b}\right) \sqrt{2}}{4 a^{1 / 4}}
$$

Result(type 3, 253 leaves):

$$
\begin{gathered}
\frac{\sqrt{b}\left(\frac{a}{b}\right)^{1 / 4} \sqrt{2} \ln \left(\frac{x^{2}+\left(\frac{a}{b}\right)^{1 / 4} x \sqrt{2}+\sqrt{\frac{a}{b}}}{x^{2}-\left(\frac{a}{b}\right)^{1 / 4} x \sqrt{2}+\sqrt{\frac{a}{b}}}\right)}{8 \sqrt{a}}+\frac{\sqrt{b}\left(\frac{a}{b}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} x}{\left(\frac{a}{b}\right)^{1 / 4}+1}\right)^{2}}{4 \sqrt{a}}+\frac{\sqrt{b}\left(\frac{a}{b}\right)^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} x}{\left(\frac{a}{b}\right)^{1 / 4}-1}\right.}{4 \sqrt{a}} \\
\quad-\frac{\sqrt{2} \ln \left(\frac{x^{2}-\left(\frac{a}{b}\right)^{1 / 4} x \sqrt{2}+\sqrt{\frac{a}{b}}}{x^{2}+\left(\frac{a}{b}\right)^{1 / 4} x \sqrt{2}+\sqrt{\frac{a}{b}}}\right)}{4\left(\frac{a}{b}\right)^{1 / 4}}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} x}{\left.\left(\frac{a}{b}\right)^{1 / 4}+1\right)}\right.}{4\left(\frac{a}{b}\right)^{1 / 4}}
\end{gathered}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{-b x^{2}+1}{\sqrt{-b^{2} x^{4}+1}} \mathrm{~d} x
$$

Optimal(type 4, 27 leaves, 5 steps):

$$
-\frac{\operatorname{EllipticE}(x \sqrt{b}, \mathrm{I})}{\sqrt{b}}+\frac{2 \text { EllipticF }(x \sqrt{b}, \mathrm{I})}{\sqrt{b}}
$$

Result(type 4, 98 leaves):

$$
\frac{\sqrt{-b x^{2}+1} \sqrt{b x^{2}+1}(\operatorname{EllipticF}(x \sqrt{b}, \mathrm{I})-\operatorname{EllipticE}(x \sqrt{b}, \mathrm{I}))}{\sqrt{b} \sqrt{-b^{2} x^{4}+1}}+\frac{\sqrt{-b x^{2}+1} \sqrt{b x^{2}+1} \operatorname{EllipticF}(x \sqrt{b}, \mathrm{I})}{\sqrt{b} \sqrt{-b^{2} x^{4}+1}}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{b x^{2}+1}{\sqrt{b^{2} x^{4}-1}} \mathrm{~d} x
$$

Optimal(type 4, 35 leaves, 3 steps):

$$
\frac{\text { EllipticE }(x \sqrt{b}, \mathrm{I}) \sqrt{-b^{2} x^{4}+1}}{\sqrt{b} \sqrt{b^{2} x^{4}-1}}
$$

Result(type 4, 106 leaves):

$$
\frac{\sqrt{b x^{2}+1} \sqrt{-b x^{2}+1} \operatorname{EllipticF}(\sqrt{-b} x, \mathrm{I})}{\sqrt{-b} \sqrt{b^{2} x^{4}-1}}+\frac{\sqrt{b x^{2}+1} \sqrt{-b x^{2}+1}(\operatorname{EllipticF}(\sqrt{-b} x, \mathrm{I})-\operatorname{EllipticE}(\sqrt{-b} x, \mathrm{I}))}{\sqrt{-b} \sqrt{b^{2} x^{4}-1}}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{c^{2} x^{2}+1}{\sqrt{-c^{4} x^{4}+1}} \mathrm{~d} x
$$

Optimal(type 4, 10 leaves, 2 steps):

$$
\text { EllipticE }(c x, \mathrm{I})
$$

Result(type 4, 117 leaves):

$$
\frac{\sqrt{-c^{2} x^{2}+1} \sqrt{c^{2} x^{2}+1} \operatorname{EllipticF}\left(x \sqrt{c^{2}}, \mathrm{I}\right)}{\sqrt{c^{2}} \sqrt{-c^{4} x^{4}+1}}-\frac{\sqrt{-c^{2} x^{2}+1} \sqrt{c^{2} x^{2}+1}\left(\operatorname{EllipticF}\left(x \sqrt{c^{2}}, \mathrm{I}\right)-\operatorname{EllipticE}\left(x \sqrt{c^{2}}, \mathrm{I}\right)\right)}{\sqrt{c^{2}} \sqrt{-c^{4} x^{4}+1}}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{e x^{2}+d}{\frac{c d^{2}}{e^{2}}+b x^{2}+c x^{4}} \mathrm{~d} x
$$

Optimal (type 3, 102 leaves, 5 steps):

$$
-\frac{e^{3 / 2} \arctan \left(\frac{-2 x \sqrt{c} \sqrt{e}+\sqrt{-b e+2 c d}}{\sqrt{b e+2 c d}}\right)}{\sqrt{c} \sqrt{b e+2 c d}}+\frac{e^{3 / 2 \arctan \left(\frac{2 x \sqrt{c} \sqrt{e}+\sqrt{-b e+2 c d}}{\sqrt{b e+2 c d}}\right)}}{\sqrt{c} \sqrt{b e+2 c d}}
$$

Result(type 3, 581 leaves):

$$
e^{4} \sqrt{2} \operatorname{arctanh}\left(\frac{c e x \sqrt{2}}{\sqrt{\left(-e^{2} b+\sqrt{e^{2}(b e-2 c d)(b e+2 c d)}\right) c}}\right) b
$$

$2 \sqrt{e^{2}(b e-2 c d)(b e+2 c d)} \sqrt{\left(-e^{2} b+\sqrt{e^{2}(b e-2 c d)(b e+2 c d)}\right) c}$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{2 x^{2}+1}{4 x^{4}+b x^{2}+1} d x
$$

Optimal(type 3, 50 leaves, 5 steps):

$$
-\frac{\arctan \left(\frac{-4 x+\sqrt{4-b}}{\sqrt{4+b}}\right)}{\sqrt{4+b}}+\frac{\arctan \left(\frac{4 x+\sqrt{4-b}}{\sqrt{4+b}}\right)}{\sqrt{4+b}}
$$

Result(type 3, 276 leaves):

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{2 x^{2}+1}{4 x^{4}+6 x^{2}+1} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 3 steps):

$$
\frac{\arctan \left(\frac{2 x}{\frac{\sqrt{10}}{2}-\frac{\sqrt{2}}{2}}\right) \sqrt{10}}{10}+\frac{\arctan \left(\frac{2 x}{\frac{\sqrt{10}}{2}+\frac{\sqrt{2}}{2}}\right) \sqrt{10}}{10}
$$

Result(type 3, 135 leaves):

$$
\frac{2 \sqrt{5} \arctan \left(\frac{8 x}{2 \sqrt{10}+2 \sqrt{2}}\right)}{5(2 \sqrt{10}+2 \sqrt{2})}+\frac{2 \arctan \left(\frac{8 x}{2 \sqrt{10}+2 \sqrt{2}}\right)}{2 \sqrt{10}+2 \sqrt{2}}-\frac{2 \sqrt{5} \arctan \left(\frac{8 x}{2 \sqrt{10}-2 \sqrt{2}}\right)}{5(2 \sqrt{10}-2 \sqrt{2})}+\frac{2 \arctan \left(\frac{8 x}{2 \sqrt{10}-2 \sqrt{2}}\right)}{2 \sqrt{10}-2 \sqrt{2}}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}+1}{x^{4}+4 x^{2}+1} d x
$$

Optimal(type 3, 43 leaves, 3 steps):

$$
\frac{\arctan \left(\frac{x}{\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}\right) \sqrt{6}}{6}+\frac{\arctan \left(\frac{x}{\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}\right) \sqrt{6}}{6}
$$

Result(type 3, 109 leaves):

$$
\frac{\sqrt{3} \arctan \left(\frac{2 x}{\sqrt{6}+\sqrt{2}}\right)}{3(\sqrt{6}+\sqrt{2})}+\frac{\arctan \left(\frac{2 x}{\sqrt{6}+\sqrt{2}}\right)}{\sqrt{6}+\sqrt{2}}-\frac{\sqrt{3} \arctan \left(\frac{2 x}{\sqrt{6}-\sqrt{2}}\right)}{3(\sqrt{6}-\sqrt{2})}+\frac{\arctan \left(\frac{2 x}{\sqrt{6}-\sqrt{2}}\right)}{\sqrt{6}-\sqrt{2}}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+1}{x^{4}+b x^{2}+1} d x
$$

Optimal (type 3, 50 leaves, 3 steps):

$$
-\frac{\ln \left(1+x^{2}-x \sqrt{2-b}\right)}{2 \sqrt{2-b}}+\frac{\ln \left(1+x^{2}+x \sqrt{2-b}\right)}{2 \sqrt{2-b}}
$$

Result(type 3, 278 leaves):

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+1}{x^{4}+5 x^{2}+1} d x
$$

Optimal(type 3, 38 leaves, 3 steps):

$$
-\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{5+\sqrt{21}}}\right) \sqrt{3}}{3}+\frac{\arctan \left(x\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right)\right) \sqrt{3}}{3}
$$

Result(type 3, 135 leaves):

$$
-\frac{2 \sqrt{21} \arctan \left(\frac{4 x}{2 \sqrt{7}+2 \sqrt{3}}\right)}{3(2 \sqrt{7}+2 \sqrt{3})}-\frac{2 \arctan \left(\frac{4 x}{2 \sqrt{7}+2 \sqrt{3}}\right)}{2 \sqrt{7}+2 \sqrt{3}}+\frac{2 \sqrt{21} \arctan \left(\frac{4 x}{2 \sqrt{7}-2 \sqrt{3}}\right)}{3(2 \sqrt{7}-2 \sqrt{3})}-\frac{2 \arctan \left(\frac{4 x}{2 \sqrt{7}-2 \sqrt{3}}\right)}{2 \sqrt{7}-2 \sqrt{3}}
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+1}{x^{4}-5 x^{2}+1} d x
$$

Optimal(type 3, 37 leaves, 5 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{(-2 x+\sqrt{3}) \sqrt{7}}{7}\right) \sqrt{7}}{7}+\frac{\operatorname{arctanh}\left(\frac{(2 x+\sqrt{3}) \sqrt{7}}{7}\right) \sqrt{7}}{7}
$$

Result(type 3, 81 leaves):

$$
\frac{2(3+\sqrt{21}) \sqrt{21} \operatorname{arctanh}\left(\frac{4 x}{2 \sqrt{7}+2 \sqrt{3}}\right)}{21(2 \sqrt{7}+2 \sqrt{3})}+\frac{2(-3+\sqrt{21}) \sqrt{21} \operatorname{arctanh}\left(\frac{4 x}{2 \sqrt{7}-2 \sqrt{3}}\right)}{21(2 \sqrt{7}-2 \sqrt{3})}
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{b x^{2}+a}{x^{4}+x^{2}+2} \mathrm{~d} x
$$

Optimal(type 3, 162 leaves, 9 steps):

$$
\begin{gathered}
\arctan \left(\frac{-2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(a+b \sqrt{2}) \sqrt{-14+28 \sqrt{2}} \\
28 \\
-\frac{\arctan \left(\frac{2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(a+b \sqrt{2}) \sqrt{-14+28 \sqrt{2}}}{28} \\
-\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-1+2 \sqrt{2}}\right)(a-b \sqrt{2})}{4 \sqrt{-2+4 \sqrt{2}}}+\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right)(a-b \sqrt{2})}{4 \sqrt{-2+4 \sqrt{2}}}
\end{gathered}
$$

Result(type 3, 709 leaves):

$$
\begin{aligned}
& \frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} a}{56}-\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} b}{14} \\
& +\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} a}{14}-\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} b}{28} \\
& -\frac{\arctan \left(\frac{2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2}) \sqrt{2} a}{28 \sqrt{1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2}) \sqrt{2} b}{7 \sqrt{1+2 \sqrt{2}}} \\
& -\frac{\arctan \left(\frac{2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2})_{a}}{7 \sqrt{1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2}) b}{14 \sqrt{1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right) \sqrt{2} a}{2 \sqrt{1+2 \sqrt{2}}} \\
& -\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} a}{56}+\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} b}{14} \\
& -\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} a}{14}+\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{-1+2 \sqrt{2}}\right) \sqrt{-1+2 \sqrt{2}} b}{28} \\
& -\frac{\arctan \left(\frac{2 x-\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2}) \sqrt{2} a}{28 \sqrt{1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x-\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2}) \sqrt{2}{ }_{b}}{7 \sqrt{1+2 \sqrt{2}}}
\end{aligned}
$$

$$
-\frac{\arctan \left(\frac{2 x-\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2})_{a}}{7 \sqrt{1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x-\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-1+2 \sqrt{2})_{b} b}{14 \sqrt{1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x-\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right) \sqrt{2} a}{2 \sqrt{1+2 \sqrt{2}}}
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{b x^{2}+a}{\left(x^{4}+x^{2}+2\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 235 leaves, 10 steps):

$$
\begin{aligned}
& \frac{x\left(3 a+2 b-(a-4 b) x^{2}\right)}{28\left(x^{4}+x^{2}+2\right)}-\frac{\arctan \left(\frac{-2 x+\sqrt{-1+2 \sqrt{2}}}{\sqrt{1+2 \sqrt{2}}}\right)(-b(2-4 \sqrt{2})+a(11-\sqrt{2})) \sqrt{-14+28 \sqrt{2}}}{784} \\
& \quad \operatorname{arctan(\frac {2x+\sqrt {-1+2\sqrt {2}}}{\sqrt {1+2\sqrt {2}}})(-b(2-4\sqrt {2})+a(11-\sqrt {2}))\sqrt {-14+28\sqrt {2}}} \\
& +\frac{784}{112 \sqrt{-2+4 \sqrt{2}}}
\end{aligned}
$$

Result(type 3, 1505 leaves):

$$
\left.\begin{array}{l}
\frac{53 \ln \left((1+2 \sqrt{2})\left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right)\right) \sqrt{-1+2 \sqrt{2}} a}{784(1+2 \sqrt{2})}-\frac{11 \ln \left((1 + 2 \sqrt { 2 }) \left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2})) \sqrt{-1+2 \sqrt{2}} b}\right.\right.}{196(1+2 \sqrt{2})} \\
\left.+\frac{11 \arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) \sqrt{2} a}{56 \sqrt{22 \sqrt{2}+25}}\right) \arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) \sqrt{2} b \\
\\
- \\
\quad 53 \arctan \left(\frac{2(1+2 \sqrt{22 \sqrt{2}+25}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) a \\
392 \sqrt{22 \sqrt{2}+25}
\end{array}\right) .
$$

$$
\begin{aligned}
& +\frac{11 \arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) b}{98 \sqrt{22 \sqrt{2}+25}}-\frac{53 \ln \left(-(1+2 \sqrt{2})\left(x \sqrt{-1+2 \sqrt{2}}-x^{2}-\sqrt{2}\right)\right) \sqrt{-1+2 \sqrt{2}} a}{784(1+2 \sqrt{2})} \\
& +\frac{11 \ln \left(-(1+2 \sqrt{2})\left(x \sqrt{-1+2 \sqrt{2}}-x^{2}-\sqrt{2}\right)\right) \sqrt{-1+2 \sqrt{2}} b}{196(1+2 \sqrt{2})}+\frac{11 \arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}(1+2 \sqrt{2})}}{\sqrt{22 \sqrt{2}+25}}\right) \sqrt{2} a}{56 \sqrt{22 \sqrt{2}+25}} \\
& -\frac{\arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) \sqrt{2} b}{28 \sqrt{22 \sqrt{2}+25}}-\frac{53 \arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) a}{392 \sqrt{22 \sqrt{2}+25}} \\
& +\frac{11 \arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) b}{98 \sqrt{22 \sqrt{2}+25}} \\
& +\frac{107 \ln \left((1+2 \sqrt{2})\left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right)\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} a}{1568(1+2 \sqrt{2})}-\frac{25 \ln \left((1+2 \sqrt{2})\left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right)\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} b}{784(1+2 \sqrt{2})} \\
& -\frac{107 \arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) \sqrt{2} a}{784 \sqrt{22 \sqrt{2}+25}} \\
& +\frac{25 \arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) \sqrt{2} b}{392 \sqrt{22 \sqrt{2}+25}} \\
& -\frac{107 \ln \left(-(1+2 \sqrt{2})\left(x \sqrt{-1+2 \sqrt{2}}-x^{2}-\sqrt{2}\right)\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} a}{1568(1+2 \sqrt{2})} \\
& +\frac{25 \ln \left(-(1+2 \sqrt{2})\left(x \sqrt{-1+2 \sqrt{2}}-x^{2}-\sqrt{2}\right)\right) \sqrt{-1+2 \sqrt{2}} \sqrt{2} b}{784(1+2 \sqrt{2})}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{107 \arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) \sqrt{2} a}{} \\
& 784 \sqrt{22 \sqrt{2}+25} \\
& +\frac{25 \arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right)(-1+2 \sqrt{2}) \sqrt{2} b}{392 \sqrt{22 \sqrt{2}+25}}+\frac{11 \arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) a}{14 \sqrt{22 \sqrt{2}+25}} \\
& -\frac{\arctan \left(\frac{2(1+2 \sqrt{2}) x+\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) b}{7 \sqrt{22 \sqrt{2}+25}}+\frac{11 \arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) a}{14 \sqrt{22 \sqrt{2}+25}} \\
& -\frac{\arctan \left(\frac{2(1+2 \sqrt{2}) x-\sqrt{-1+2 \sqrt{2}}(1+2 \sqrt{2})}{\sqrt{22 \sqrt{2}+25}}\right) b}{7 \sqrt{22 \sqrt{2}+25}} \\
& \underline{(-14 a-28 \sqrt{2} a+112 b \sqrt{2}+56 b) x}+\underline{\sqrt{-1+2 \sqrt{2}}(-70 a-42 \sqrt{2} a+56 b \sqrt{2}+28 b)} \\
& +\quad 1+2 \sqrt{2} \\
& 784\left(x^{2}+\sqrt{2}+x \sqrt{-1+2 \sqrt{2}}\right) \\
& -\frac{-\frac{(-14 a-28 \sqrt{2} a+112 b \sqrt{2}+56 b) x}{1+2 \sqrt{2}}+\frac{\sqrt{-1+2 \sqrt{2}}(-70 a-42 \sqrt{2} a+56 b \sqrt{2}+28 b)}{1+2 \sqrt{2}}}{1} \\
& 784\left(x^{2}+\sqrt{2}-x \sqrt{-1+2 \sqrt{2}}\right)
\end{aligned}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+3}{\sqrt{-x^{4}+x^{2}+3}} d x
$$

Optimal(type 4, 74 leaves, 4 steps):

$$
-\frac{\text { EllipticE }\left(\frac{x \sqrt{2}}{\sqrt{1+\sqrt{13}}}, \frac{\mathrm{I} \sqrt{3}}{6}+\frac{\mathrm{I} \sqrt{39}}{6}\right) \sqrt{-2+2 \sqrt{13}}}{2}+\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{\sqrt{1+\sqrt{13}}}, \frac{\mathrm{I} \sqrt{3}}{6}+\frac{\mathrm{I} \sqrt{39}}{6}\right) \sqrt{7+2 \sqrt{13}}
$$

Result(type 4, 199 leaves):

$$
\begin{aligned}
& \frac{1}{\sqrt{-6+6 \sqrt{13}} \sqrt{-x^{4}+x^{2}+3}(1+\sqrt{13})}\left(36 \sqrt{1-\left(-\frac{1}{6}+\frac{\sqrt{13}}{6}\right) x^{2} \sqrt{1-\left(-\frac{1}{6}-\frac{\sqrt{13}}{6}\right) x^{2}}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{-6+6 \sqrt{13}}}{6}, \frac{\mathrm{I} \sqrt{3}}{6}+\frac{\mathrm{I} \sqrt{39}}{6}\right)\right.}\right. \\
& \left.\left.\quad \text { - EllipticE }\left(\frac{x \sqrt{-6+6 \sqrt{13}}}{6}, \frac{\mathrm{I} \sqrt{3}}{6}+\frac{\mathrm{I} \sqrt{39}}{6}\right)\right)\right) \\
& +\frac{18 \sqrt{1-\left(-\frac{1}{6}+\frac{\sqrt{13}}{6}\right) x^{2}} \sqrt{1-\left(-\frac{1}{6}-\frac{\sqrt{13}}{6}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{-6+6 \sqrt{13}}}{6}, \frac{\mathrm{I} \sqrt{3}}{6}+\frac{\mathrm{I} \sqrt{39}}{6}\right)}{\sqrt{-6+6 \sqrt{13}} \sqrt{-x^{4}+x^{2}+3}}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+3}{\sqrt{-x^{4}-2 x^{2}+3}} d x
$$

Optimal(type 4, 27 leaves, 4 steps):

$$
-\operatorname{EllipticE}\left(x, \frac{\mathrm{I}}{3} \sqrt{3}\right) \sqrt{3}+2 \operatorname{EllipticF}\left(x, \frac{\mathrm{I}}{3} \sqrt{3}\right) \sqrt{3}
$$

Result(type 4, 94 leaves):

$$
\frac{\sqrt{-x^{2}+1} \sqrt{3 x^{2}+9}\left(\operatorname{EllipticF}\left(x, \frac{\mathrm{I}}{3} \sqrt{3}\right)-\operatorname{EllipticE}\left(x, \frac{\mathrm{I}}{3} \sqrt{3}\right)\right)}{\sqrt{-x^{4}-2 x^{2}+3}}+\frac{\sqrt{-x^{2}+1} \sqrt{3 x^{2}+9} \operatorname{EllipticF}\left(x, \frac{\mathrm{I}}{3} \sqrt{3}\right)}{\sqrt{-x^{4}-2 x^{2}+3}}
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+3}{\sqrt{-x^{4}-3 x^{2}+3}} d x
$$

Optimal(type 4, 74 leaves, 4 steps):

$$
-\frac{\text { EllipticE }\left(\frac{x \sqrt{2}}{\sqrt{-3+\sqrt{21}}}, \frac{\mathrm{I} \sqrt{7}}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{6+2 \sqrt{21}}}{2}+\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{\sqrt{-3+\sqrt{21}}}, \frac{\mathrm{I} \sqrt{7}}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3+2 \sqrt{21}}
$$

Result(type 4, 203 leaves):
$\frac{36 \sqrt{1-\left(\frac{1}{2}+\frac{\sqrt{21}}{6}\right) x^{2}} \sqrt{1-\left(\frac{1}{2}-\frac{\sqrt{21}}{6}\right) x^{2}}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{18+6 \sqrt{21}}}{6}, \frac{\mathrm{I} \sqrt{7}}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{18+6 \sqrt{21}}}{6}, \frac{\mathrm{I} \sqrt{7}}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)\right)}{\sqrt{18+6 \sqrt{21}} \sqrt{-x^{4}-3 x^{2}+3}(-3+\sqrt{21})}$

$$
+\frac{18 \sqrt{1-\left(\frac{1}{2}+\frac{\sqrt{21}}{6}\right) x^{2}} \sqrt{1-\left(\frac{1}{2}-\frac{\sqrt{21}}{6}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{18+6 \sqrt{21}}}{6}, \frac{\mathrm{I} \sqrt{7}}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{\sqrt{18+6 \sqrt{21}} \sqrt{-x^{4}-3 x^{2}+3}}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int \frac{1+x^{2} \sqrt{\frac{c}{a}}}{\sqrt{c x^{4}-a}} \mathrm{~d} x
$$

Optimal(type 4, 44 leaves, 3 steps):

$$
\frac{\text { EllipticE }\left(\left(\frac{c}{a}\right)^{1 / 4} x, \text { I }\right) \sqrt{1-\frac{c x^{4}}{a}}}{\left(\frac{c}{a}\right)^{1 / 4} \sqrt{c x^{4}-a}}
$$

Result(type 4, 164 leaves):
$\sqrt{1+\frac{\sqrt{c} x^{2}}{\sqrt{a}}} \sqrt{1-\frac{\sqrt{c} x^{2}}{\sqrt{a}}}$ EllipticF $\left(x \sqrt{-\frac{\sqrt{c}}{\sqrt{a}}}, \mathrm{I}\right)$

$$
\sqrt{-\frac{\sqrt{c}}{\sqrt{a}}} \sqrt{c x^{4}-a}
$$

$$
+\frac{\sqrt{\frac{c}{a}} \sqrt{a} \sqrt{1+\frac{\sqrt{c} x^{2}}{\sqrt{a}}} \sqrt{1-\frac{\sqrt{c} x^{2}}{\sqrt{a}}}\left(\operatorname{EllipticF}\left(x \sqrt{-\frac{\sqrt{c}}{\sqrt{a}}}, \mathrm{I}\right)-\operatorname{EllipticE}\left(x \sqrt{-\frac{\sqrt{c}}{\sqrt{a}}}, \mathrm{I}\right)\right)}{\sqrt{-\frac{\sqrt{c}}{\sqrt{a}}} \sqrt{c x^{4}-a} \sqrt{c}}
$$

Problem 49: Unable to integrate problem.

$$
\int \frac{\left(b x^{4}+1\right)^{p}}{\left(-x^{2}+1\right)^{3}} d x
$$

Optimal(type 6, 81 leaves, 6 steps):
$x \operatorname{AppellF1}\left(\frac{1}{4}, 3,-p, \frac{5}{4}, x^{4},-b x^{4}\right)+x^{3} \operatorname{AppellF1}\left(\frac{3}{4}, 3,-p, \frac{7}{4}, x^{4},-b x^{4}\right)+\frac{3 x^{5} \text { AppellF1 }\left(\frac{5}{4}, 3,-p, \frac{9}{4}, x^{4},-b x^{4}\right)}{5}+\frac{x^{7} \text { AppellF1 }\left(\frac{7}{4}, 3,-p, \frac{11}{4}, x^{4},-b x^{4}\right)}{7}$
Result(type 8, 21 leaves):

$$
\int \frac{\left(b x^{4}+1\right)^{p}}{\left(-x^{2}+1\right)^{3}} \mathrm{~d} x
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{e x^{2}+d}\left(-e^{2} x^{4}+d^{2}\right)} \mathrm{d} x
$$

Optimal(type 3, 45 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2} \sqrt{e}}{\sqrt{e x^{2}+d}}\right) \sqrt{2}}{4 d^{2} \sqrt{e}}+\frac{x}{2 d^{2} \sqrt{e x^{2}+d}}
$$

Result(type 3, 440 leaves):

$$
e \sqrt{2} \ln \left(\frac{4 d+2 \sqrt{d e}\left(x-\frac{\sqrt{d e}}{e}\right)+2 \sqrt{2} \sqrt{d} \sqrt{\left(x-\frac{\sqrt{d e}}{e}\right)^{2} e+2 \sqrt{d e}\left(x-\frac{\sqrt{d e}}{e}\right)+2 d}}{x-\frac{\sqrt{d e}}{e}}\right)
$$

$$
4 \sqrt{d e}(\sqrt{-d e}+\sqrt{d e})(-\sqrt{-d e}+\sqrt{d e}) \sqrt{d}
$$

$$
-\frac{e \sqrt{2} \ln \left(\frac{4 d-2 \sqrt{d e}\left(x+\frac{\sqrt{d e}}{e}\right)+2 \sqrt{2} \sqrt{d} \sqrt{\left(x+\frac{\sqrt{d e}}{e}\right)^{2} e-2 \sqrt{d e}\left(x+\frac{\sqrt{d e}}{e}\right)+2 d}}{x+\frac{\sqrt{d e}}{e}}\right)}{-}
$$

$$
4 \sqrt{d e}(\sqrt{-d e}+\sqrt{d e})(-\sqrt{-d e}+\sqrt{d e}) \sqrt{d}
$$

$$
+\frac{\sqrt{\left(x-\frac{\sqrt{-d e}}{e}\right)^{2} e+2 \sqrt{-d e}\left(x-\frac{\sqrt{-d e}}{e}\right)}}{2(\sqrt{-d e}+\sqrt{d e})(-\sqrt{-d e}+\sqrt{d e}) d\left(x-\frac{\sqrt{-d e}}{e}\right)}+\frac{\sqrt{\left(x+\frac{\sqrt{-d e}}{e}\right)^{2} e-2 \sqrt{-d e}\left(x+\frac{\sqrt{-d e}}{e}\right)}}{2(\sqrt{-d e}+\sqrt{d e})(-\sqrt{-d e}+\sqrt{d e}) d\left(x+\frac{\sqrt{-d e}}{e}\right)}
$$

Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-b x^{2}+a} \sqrt{-b^{2} x^{4}+a^{2}}} d x
$$

Optimal(type 3, 62 leaves, 3 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2} \sqrt{b}}{\sqrt{b x^{2}+a}}\right) \sqrt{-b x^{2}+a} \sqrt{b x^{2}+a} \sqrt{2}}{2 a \sqrt{b} \sqrt{-b^{2} x^{4}+a^{2}}}
$$

Result(type 3, 265 leaves):

$$
\begin{aligned}
& \frac{1}{2\left(b x^{2}-a\right) \sqrt{b x^{2}+a}(\sqrt{a b}+\sqrt{-a b})(-\sqrt{a b}+\sqrt{-a b}) \sqrt{a b}}\left(\sqrt{-b x^{2}+a} \sqrt{-b^{2} x^{4}+a^{2}}\right) b \sqrt{a} \sqrt{2} \ln \left(\frac{2 b\left(\sqrt{2} \sqrt{a} \sqrt{b x^{2}+a}+\sqrt{a b} x+a\right)}{b x-\sqrt{a b}}\right) \\
& -b \sqrt{a} \sqrt{2} \ln \left(\frac{2 b\left(\sqrt{2} \sqrt{a} \sqrt{b x^{2}+a}-\sqrt{a b} x+a\right)}{b x+\sqrt{a b}}\right)-2 \sqrt{b} \ln \left(\frac{\sqrt{b x^{2}+a} \sqrt{b}+b x}{\sqrt{b}}\right) \sqrt{a b} \\
& +2 \sqrt{b} \ln \left(\frac{\sqrt{-\frac{(b x+\sqrt{-a b})(-b x+\sqrt{-a b})}{b}} \sqrt{b}+b x}{\sqrt{b}}\right)
\end{aligned}
$$

Problem 57: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(e x^{2}+d\right)^{5 / 2}}{c e^{2} x^{4}+b e^{2} x^{2}+b d e-c d^{2}} \mathrm{~d} x
$$

Optimal(type 3, 113 leaves, 7 steps):

$$
\frac{(-2 b e+5 c d) \operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{e x^{2}+d}}\right)}{2 c^{2} \sqrt{e}}-\frac{(-b e+2 c d)^{3 / 2} \operatorname{arctanh}\left(\frac{x \sqrt{e} \sqrt{-b e+2 c d}}{\sqrt{-b e+c d} \sqrt{e x^{2}+d}}\right)}{c^{2} \sqrt{e} \sqrt{-b e+c d}}+\frac{x \sqrt{e x^{2}+d}}{2 c}
$$

Result(type ?, 7002 leaves): Display of huge result suppressed!
Problem 58: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(e x^{2}+d\right)^{3 / 2}}{c e^{2} x^{4}+b e^{2} x^{2}+b d e-c d^{2}} \mathrm{~d} x
$$

Optimal(type 3, 88 leaves, 6 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{e x^{2}+d}}\right)}{c \sqrt{e}}-\frac{\operatorname{arctanh}\left(\frac{x \sqrt{e} \sqrt{-b e+2 c d}}{\sqrt{-b e+c d} \sqrt{e x^{2}+d}}\right) \sqrt{-b e+2 c d}}{c \sqrt{e} \sqrt{-b e+c d}}
$$

Result(type ?, 4307 leaves): Display of huge result suppressed!
Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{x^{4}+x^{2}+1}}{\left(x^{2}+1\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 94 leaves, 23 steps):

$$
\frac{\arctan \left(\frac{x}{\sqrt{x^{4}+x^{2}+1}}\right)}{4}+\frac{x \sqrt{x^{4}+x^{2}+1}}{4\left(x^{2}+1\right)^{2}}+\frac{\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \operatorname{EllipticE}\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}}{4 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}}
$$

Result(type 4, 332 leaves):

Problem 62: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{x^{4}+x^{2}+1}}{\left(x^{2}+1\right)^{4}} \mathrm{~d} x
$$

Optimal(type 4, 172 leaves, 26 steps):

$$
\frac{\arctan \left(\frac{x}{\sqrt{x^{4}+x^{2}+1}}\right)}{4}+\frac{x \sqrt{x^{4}+x^{2}+1}}{6\left(x^{2}+1\right)^{3}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{6\left(x^{2}+1\right)^{2}}+\frac{\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \operatorname{EllipticE}\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}}{3 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}}
$$

$$
-\left(\begin{array}{l}
\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \text { EllipticF }\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}
\end{array}\right.
$$

$$
8 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}
$$

Result(type 4, 437 leaves):

$$
\begin{aligned}
& \frac{x \sqrt{x^{4}+x^{2}+1}}{4\left(x^{2}+1\right)^{2}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{4\left(x^{2}+1\right)}+\frac{\sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticF }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{\sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1)} \\
& -\frac{\sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticE }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{\sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1)} \\
& \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticPi }\left(\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} x,-\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\sqrt{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}{\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right) \\
& 2 \sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{x^{4}+x^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x \sqrt{x^{4}+x^{2}+1}}{6\left(x^{2}+1\right)^{3}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{6\left(x^{2}+1\right)^{2}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{3\left(x^{2}+1\right)}-\frac{\sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}} \\
& +\frac{4 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticF }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{2} \\
& 3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1) \\
& -\frac{4 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticE }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{\sqrt{2}} \\
& \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticPi }\left(\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} x,-\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\sqrt{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}{\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right) \\
& 2 \sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{x^{4}+x^{2}+1}
\end{aligned}
$$

Problem 65: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(x^{2}+1\right)^{2}}{\left(x^{4}+x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 99 leaves, 2 steps):

$$
\frac{x\left(2 x^{2}+1\right)}{3 \sqrt{x^{4}+x^{2}+1}}-\frac{2 x \sqrt{x^{4}+x^{2}+1}}{3\left(x^{2}+1\right)}+\frac{2\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \operatorname{EllipticE}\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}}{3 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}}
$$

Result(type 4, 267 leaves):

$$
\begin{aligned}
& -\frac{2\left(-\frac{1}{6} x+\frac{1}{6} x^{3}\right)}{\sqrt{x^{4}+x^{2}+1}}+\frac{4 \sqrt{1-\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) x^{2}} \sqrt{1-\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x^{2}} \operatorname{EllipticF}\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}} \\
& \quad+\frac{1}{3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1)}\left(8 \sqrt{1-\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) x^{2} \sqrt{1-\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x^{2}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right.\right.}\right.
\end{aligned}
$$

$$
\left.\left.\left.\frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)- \text { EllipticE }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)\right)\right)-\frac{2\left(\frac{1}{6} x^{3}+\frac{1}{3} x\right)}{\sqrt{x^{4}+x^{2}+1}}-\frac{4\left(-\frac{1}{3} x^{3}-\frac{1}{6} x\right)}{\sqrt{x^{4}+x^{2}+1}}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(x^{2}+1\right)^{2}\left(x^{4}+x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 110 leaves, 16 steps):

$$
\arctan \left(\frac{x}{\sqrt{x^{4}+x^{2}+1}}\right)-\frac{x\left(x^{2}+2\right)}{3 \sqrt{x^{4}+x^{2}+1}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{3\left(x^{2}+1\right)}+\frac{\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \operatorname{EllipticE}\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}}{6 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}}
$$

Result(type 4, 418 leaves):
$-\frac{2\left(\frac{1}{6} x^{3}+\frac{1}{3} x\right)}{\sqrt{x^{4}+x^{2}+1}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{2\left(x^{2}+1\right)}-\frac{5 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticF }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}}$

$$
3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1)
$$

$$
-\frac{2 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \operatorname{EllipticE}\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1)}
$$

$$
+\underline{2 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticPi }\left(\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} x,-\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\sqrt{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}{\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right)}
$$

$$
+\frac{1}{\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{x^{4}+x^{2}+1}}
$$

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(x^{2}+1\right)^{3}\left(x^{4}+x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 192 leaves, 23 steps):

$$
\frac{3 \arctan \left(\frac{x}{\sqrt{x^{4}+x^{2}+1}}\right)}{4}-\frac{x\left(-x^{2}+1\right)}{3 \sqrt{x^{4}+x^{2}+1}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{4\left(x^{2}+1\right)^{2}}-\frac{x \sqrt{x^{4}+x^{2}+1}}{3\left(x^{2}+1\right)}
$$

$$
\begin{aligned}
& +\frac{19\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \text { EllipticE }\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}}{12 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}} \\
& -\frac{5\left(x^{2}+1\right) \sqrt{\cos (2 \arctan (x))^{2}} \operatorname{EllipticF}\left(\sin (2 \arctan (x)), \frac{1}{2}\right) \sqrt{\frac{x^{4}+x^{2}+1}{\left(x^{2}+1\right)^{2}}}}{}
\end{aligned}
$$

$$
4 \cos (2 \arctan (x)) \sqrt{x^{4}+x^{2}+1}
$$

Result(type 4, 438 leaves):

[^1]\[

$$
\begin{aligned}
& -\frac{2\left(\frac{1}{6} x-\frac{1}{6} x^{3}\right)}{\sqrt{x^{4}+x^{2}+1}}+\frac{x \sqrt{x^{4}+x^{2}+1}}{4\left(x^{2}+1\right)^{2}}+\frac{5 x \sqrt{x^{4}+x^{2}+1}}{4\left(x^{2}+1\right)} \\
& -\frac{10 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticF }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right) .}{2} \\
& 3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1} \\
& +\frac{19 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticF }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{2} \\
& 3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1) \\
& -\frac{19 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticE }\left(\frac{x \sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}, \frac{\sqrt{-2+2 \mathrm{I} \sqrt{3}}}{2}\right)}{3 \sqrt{-2+2 \mathrm{I} \sqrt{3}} \sqrt{x^{4}+x^{2}+1}(\mathrm{I} \sqrt{3}+1)} \\
& 3 \sqrt{1+\frac{x^{2}}{2}-\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \sqrt{1+\frac{x^{2}}{2}+\frac{\mathrm{I} x^{2} \sqrt{3}}{2}} \text { EllipticPi }\left(\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} x,-\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\sqrt{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}{\sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right) \\
& 2 \sqrt{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{x^{4}+x^{2}+1}
\end{aligned}
$$
\]

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{2}}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 185 leaves, 5 steps):

$$
\begin{gathered}
-\frac{c(-2 b e+3 c d) x}{e^{4}}+\frac{c^{2} x^{3}}{3 e^{3}}+\frac{\left(a e^{2}-b d e+c d^{2}\right)^{2} x}{4 d e^{4}\left(e x^{2}+d\right)^{2}}-\frac{\left(-3 a e^{2}-5 b d e+13 c d^{2}\right)\left(a e^{2}-b d e+c d^{2}\right) x}{8 d^{2} e^{4}\left(e x^{2}+d\right)} \\
+\frac{\left(35 c^{2} d^{4}-6 c d^{2} e(-a e+5 b d)+e^{2}\left(3 e^{2} a^{2}+2 a b d e+3 b^{2} d^{2}\right)\right) \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right)}{8 d^{5 / 2} e^{9 / 2}}
\end{gathered}
$$

Result(type 3, 401 leaves):

$$
\begin{aligned}
\frac{c^{2} x^{3}}{3 e^{3}} & +\frac{2 c b x}{e^{3}}-\frac{3 c^{2} x d}{e^{4}}+\frac{3 e x^{3} a^{2}}{8\left(e x^{2}+d\right)^{2} d^{2}}+\frac{x^{3} a b}{4\left(e x^{2}+d\right)^{2} d}-\frac{5 x^{3} a c}{4 e\left(e x^{2}+d\right)^{2}}-\frac{5 x^{3} b^{2}}{8 e\left(e x^{2}+d\right)^{2}}+\frac{9 d x^{3} b c}{4 e^{2}\left(e x^{2}+d\right)^{2}}-\frac{13 d^{2} x^{3} c^{2}}{8 e^{3}\left(e x^{2}+d\right)^{2}} \\
& +\frac{5 x a^{2}}{8\left(e x^{2}+d\right)^{2} d}-\frac{x a b}{4 e\left(e x^{2}+d\right)^{2}}-\frac{3 d x a c}{4 e^{2}\left(e x^{2}+d\right)^{2}}-\frac{3 d x b^{2}}{8 e^{2}\left(e x^{2}+d\right)^{2}}+\frac{7 d^{2} x b c}{4 e^{3}\left(e x^{2}+d\right)^{2}}-\frac{11 d^{3} x c^{2}}{8 e^{4}\left(e x^{2}+d\right)^{2}}+\frac{3 \arctan \left(\frac{e x}{\sqrt{d e}}\right) a^{2}}{8 d^{2} \sqrt{d e}} \\
& +\frac{\arctan \left(\frac{e x}{\sqrt{d e}}\right) a b}{4 e d \sqrt{d e}}+\frac{3 \arctan \left(\frac{e x}{\sqrt{d e}}\right) a c}{4 e^{2} \sqrt{d e}}+\frac{3 \arctan \left(\frac{e x}{\sqrt{d e}}\right) b^{2}}{8 e^{2} \sqrt{d e}}-\frac{15 d \arctan \left(\frac{e x}{\sqrt{d e}}\right) b c}{45 d^{2} \arctan \left(\frac{e x}{\sqrt{d e}}\right) c^{2}}
\end{aligned}
$$

Problem 71: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c x^{4}+b x^{2}+a\right)^{2}}{\left(e x^{2}+d\right)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 234 leaves, 5 steps):

$$
\begin{aligned}
\frac{c^{2} x}{e^{4}} & +\frac{\left(a e^{2}-b d e+c d^{2}\right)^{2} x}{6 d e^{4}\left(e x^{2}+d\right)^{3}}-\frac{\left(-5 a e^{2}-7 b d e+19 c d^{2}\right)\left(a e^{2}-b d e+c d^{2}\right) x}{24 d^{2} e^{4}\left(e x^{2}+d\right)^{2}} \\
& +\frac{\left(29 c^{2} d^{4}-2 c d^{2} e(-a e+11 b d)+e^{2}\left(5 e^{2} a^{2}+2 a b d e+b^{2} d^{2}\right)\right) x}{16 d^{3} e^{4}\left(e x^{2}+d\right)} \\
& -\frac{\left(35 c^{2} d^{4}-2 c d^{2} e(a e+5 b d)-e^{2}\left(5 e^{2} a^{2}+2 a b d e+b^{2} d^{2}\right)\right) \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right)}{16 d^{7 / 2} e^{9 / 2}}
\end{aligned}
$$

Result(type 3, 505 leaves):
$\frac{5 e^{2} x^{5} a^{2}}{16\left(e x^{2}+d\right)^{3} d^{3}}-\frac{11 x^{5} b c}{8 e\left(e x^{2}+d\right)^{3}}+\frac{29 d x^{5} c^{2}}{16 e^{2}\left(e x^{2}+d\right)^{3}}+\frac{5 e x^{3} a^{2}}{6\left(e x^{2}+d\right)^{3} d^{2}}-\frac{x^{3} a c}{3 e\left(e x^{2}+d\right)^{3}}+\frac{17 d^{2} x^{3} c^{2}}{6 e^{3}\left(e x^{2}+d\right)^{3}}-\frac{x a b}{8 e\left(e x^{2}+d\right)^{3}}-\frac{d x b^{2}}{16 e^{2}\left(e x^{2}+d\right)^{3}}$

$$
\begin{aligned}
& +\frac{19 d^{3} x c^{2}}{16 e^{4}\left(e x^{2}+d\right)^{3}}+\frac{\arctan \left(\frac{e x}{\sqrt{d e}}\right) b^{2}}{16 e^{2} d \sqrt{d e}}+\frac{5 \arctan \left(\frac{e x}{\sqrt{d e}}\right) b c}{8 e^{3} \sqrt{d e}}-\frac{35 d \arctan \left(\frac{e x}{\sqrt{d e}}\right) c^{2}}{16 e^{4} \sqrt{d e}}+\frac{x^{5} a c}{8\left(e x^{2}+d\right)^{3} d}+\frac{x^{3} a b}{3\left(e x^{2}+d\right)^{3} d}+\frac{c^{2} x}{e^{4}} \\
& -\frac{5 d^{2} x b c}{8 e^{3}\left(e x^{2}+d\right)^{3}}+\frac{\arctan \left(\frac{e x}{\sqrt{d e}}\right) a b}{8 e d^{2} \sqrt{d e}}+\frac{\arctan \left(\frac{e x}{\sqrt{d e}}\right) a c}{8 e^{2} d \sqrt{d e}}+\frac{e x^{5} a b}{8\left(e x^{2}+d\right)^{3} d^{2}}-\frac{5 d x^{3} b c}{3 e^{2}\left(e x^{2}+d\right)^{3}}-\frac{d x a c}{8 e^{2}\left(e x^{2}+d\right)^{3}}+\frac{x^{5} b^{2}}{16\left(e x^{2}+d\right)^{3} d} \\
& +\frac{11 x a^{2}}{16\left(e x^{2}+d\right)^{3} d}-\frac{x^{3} b^{2}}{6 e\left(e x^{2}+d\right)^{3}}+\frac{5 \arctan \left(\frac{e x}{\sqrt{d e}}\right) a^{2}}{16 d^{3} \sqrt{d e}}
\end{aligned}
$$

Problem 72: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(e x^{2}+d\right)^{3}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 280 leaves, 5 steps):

$$
\frac{e^{2}(-b e+3 c d) x}{c^{2}}+\frac{e^{3} x^{3}}{3 c}
$$

$$
2 c^{5} / 2 \sqrt{b-\sqrt{-4 a c+b^{2}}}
$$

$$
+\underline{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(e\left(3 c^{2} d^{2}+b^{2} e^{2}-c e(a e+3 b d)\right)-\frac{(-b e+2 c d)\left(c^{2} d^{2}+b^{2} e^{2}-c e(3 a e+b d)\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}
$$

$$
2 c^{5} / 2 \sqrt{b+\sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 1210 leaves):

$$
\begin{gathered}
\left.\frac{e^{3} x^{3}}{3 c}-\frac{e^{3} b x}{c^{2}}+\frac{3 e^{2} x d}{c}+\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) a e^{3}}{2 c \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b^{2} e^{3} \\
\left.+\frac{3 \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right)}{2 c \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b d e^{2}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) \\
+\frac{2 c^{2} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}{2 \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}
\end{gathered}
$$

$$
2 c \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)} c \quad 2 \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c} \quad \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)}
$$

Problem 85: Result more than twice size of optimal antiderivative.

$$
\int\left(5 x^{2}+7\right)\left(-x^{4}+x^{2}+2\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 75 leaves, 6 steps):

$$
\frac{x\left(35 x^{2}+48\right)\left(-x^{4}+x^{2}+2\right)^{3 / 2}}{63}+\frac{4432 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{315}+\frac{418 \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{105}+\frac{x\left(669 x^{2}+1087\right) \sqrt{-x^{4}+x^{2}+2}}{315}
$$

Result(type 4, 175 leaves):

$$
\begin{aligned}
& -\frac{13 x^{5} \sqrt{-x^{4}+x^{2}+2}}{63}+\frac{1259 x^{3} \sqrt{-x^{4}+x^{2}+2}}{315}+\frac{1567 x \sqrt{-x^{4}+x^{2}+2}}{315}+\frac{2843 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{315 \sqrt{-x^{4}+x^{2}+2}} \\
& -\frac{2216 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)\right)}{315 \sqrt{-x^{4}+x^{2}+2}}-\frac{5 x^{7} \sqrt{-x^{4}+x^{2}+2}}{9}
\end{aligned}
$$

Problem 86: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-x^{4}+x^{2}+2\right)^{3 / 2}}{\left(5 x^{2}+7\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 86 leaves, 21 steps):

$$
-\frac{97 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{525}+\frac{458 \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{875}-\frac{1241 \text { EllipticPi }\left(\frac{x \sqrt{2}}{2},-\frac{10}{7}, \mathrm{I} \sqrt{2}\right)}{6125}-\frac{x \sqrt{-x^{4}+x^{2}+2}}{75}-\frac{17 x \sqrt{-x^{4}+x^{2}+2}}{175\left(5 x^{2}+7\right)}
$$

Result(type 4, 179 leaves):

$$
\begin{aligned}
& -\frac{17 x \sqrt{-x^{4}+x^{2}+2}}{175\left(5 x^{2}+7\right)}-\frac{x \sqrt{-x^{4}+x^{2}+2}}{75}+\frac{229 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{875 \sqrt{-x^{4}+x^{2}+2}}-\frac{97 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticE}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{1050 \sqrt{-x^{4}+x^{2}+2}} \\
& -\frac{1241 \sqrt{2} \sqrt{1-\frac{x^{2}}{2}} \sqrt{x^{2}+1} \operatorname{EllipticPi}\left(\frac{x \sqrt{2}}{2},-\frac{10}{7}, \mathrm{I} \sqrt{2}\right)}{6125 \sqrt{-x^{4}+x^{2}+2}}
\end{aligned}
$$

Problem 87: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(5 x^{2}+7\right)^{3}}{\sqrt{-x^{4}+x^{2}+2}} \mathrm{~d} x
$$

Optimal(type 4, 63 leaves, 6 steps):

$$
\frac{3905 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{3}-542 \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\frac{625 x \sqrt{-x^{4}+x^{2}+2}}{3}-25 x^{3} \sqrt{-x^{4}+x^{2}+2}
$$

Result(type 4, 141 leaves):

$$
\frac{2279 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{6 \sqrt{-x^{4}+x^{2}+2}}-\frac{3905 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)\right)}{6 \sqrt{-x^{4}+x^{2}+2}}
$$

$$
-\frac{625 x \sqrt{-x^{4}+x^{2}+2}}{3}-25 x^{3} \sqrt{-x^{4}+x^{2}+2}
$$

Problem 88: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(5 x^{2}+7\right)^{2}}{\sqrt{-x^{4}+x^{2}+2}} d x
$$

Optimal(type 4, 46 leaves, 5 steps):

$$
\frac{260 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{3}-21 \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\frac{25 x \sqrt{-x^{4}+x^{2}+2}}{3}
$$

Result(type 4, 124 leaves):

$$
\begin{aligned}
& \frac{197 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{6 \sqrt{-x^{4}+x^{2}+2}}-\frac{130 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)\right)}{3 \sqrt{-x^{4}+x^{2}+2}} \\
& \quad-\frac{25 x \sqrt{-x^{4}+x^{2}+2}}{3}
\end{aligned}
$$

Problem 89: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-x^{4}+x^{2}+2}} d x
$$

Optimal(type 4, 13 leaves, 2 steps):

$$
\text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)
$$

Result(type 4, 46 leaves):

$$
\frac{\sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{2 \sqrt{-x^{4}+x^{2}+2}}
$$

Problem 90: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(5 x^{2}+7\right)^{2} \sqrt{-x^{4}+x^{2}+2}} \mathrm{~d} x
$$

Optimal(type 4, 71 leaves, 8 steps):

$$
-\frac{5 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{476}-\frac{\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{238}+\frac{167 \text { EllipticPi }\left(\frac{x \sqrt{2}}{2},-\frac{10}{7}, \mathrm{I} \sqrt{2}\right)}{3332}-\frac{25 x \sqrt{-x^{4}+x^{2}+2}}{476\left(5 x^{2}+7\right)}
$$

Result(type 4, 164 leaves):

$$
\begin{aligned}
& -\frac{25 x \sqrt{-x^{4}+x^{2}+2}}{476\left(5 x^{2}+7\right)}-\frac{\sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{476 \sqrt{-x^{4}+x^{2}+2}}-\frac{5 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticE}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{952 \sqrt{-x^{4}+x^{2}+2}} \\
& \quad+\frac{167 \sqrt{2} \sqrt{1-\frac{x^{2}}{2}} \sqrt{x^{2}+1} \operatorname{EllipticPi}\left(\frac{x \sqrt{2}}{2},-\frac{10}{7}, \mathrm{I} \sqrt{2}\right)}{3332 \sqrt{-x^{4}+x^{2}+2}}
\end{aligned}
$$

Problem 91: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(5 x^{2}+7\right)^{5}}{\left(-x^{4}+x^{2}+2\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 85 leaves, 7 steps):

$$
-\frac{3482293 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{18}+\frac{627857 \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{6}+\frac{x\left(1419793 x^{2}+1419985\right)}{18 \sqrt{-x^{4}+x^{2}+2}}+\frac{27500 x \sqrt{-x^{4}+x^{2}+2}}{3}+625 x^{3} \sqrt{-x^{4}+x^{2}+2}
$$

Result(type 4, 279 leaves):

$$
\begin{aligned}
& \frac{33614\left(\frac{5}{36} x-\frac{1}{36} x^{3}\right)}{\sqrt{-x^{4}+x^{2}+2}}-\frac{799361 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{18 \sqrt{-x^{4}+x^{2}+2}} \\
& +\frac{3482293 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)\right)}{36 \sqrt{-x^{4}+x^{2}+2}}+\frac{120050\left(\frac{1}{9} x^{3}-\frac{1}{18} x\right)}{\sqrt{-x^{4}+x^{2}+2}}+\frac{171500\left(\frac{1}{18} x^{3}+\frac{2}{9} x\right)}{\sqrt{-x^{4}+x^{2}+2}} \\
& +\frac{122500\left(\frac{5}{18} x^{3}+\frac{1}{9} x\right)}{\sqrt{-x^{4}+x^{2}+2}}+\frac{43750\left(\frac{7}{18} x^{3}+\frac{5}{9} x\right)}{\sqrt{-x^{4}+x^{2}+2}}+\frac{27500 x \sqrt{-x^{4}+x^{2}+2}}{3}+\frac{6250\left(\frac{17}{18} x^{3}+\frac{7}{9} x\right)}{\sqrt{-x^{4}+x^{2}+2}}+625 x^{3} \sqrt{-x^{4}+x^{2}+2}
\end{aligned}
$$

Problem 92: Result more than twice size of optimal antiderivative.

$$
\int \frac{5 x^{2}+7}{\left(-x^{4}+x^{2}+2\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 53 leaves, 5 steps):

$$
-\frac{13 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{18}+\frac{17 \text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{6}+\frac{x\left(13 x^{2}+25\right)}{18 \sqrt{-x^{4}+x^{2}+2}}
$$

Result(type 4, 155 leaves):

$$
\begin{aligned}
& \frac{14\left(\frac{5}{36} x-\frac{1}{36} x^{3}\right)}{\sqrt{-x^{4}+x^{2}+2}}+\frac{19 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{18 \sqrt{-x^{4}+x^{2}+2}} \\
& \quad+\frac{13 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1}\left(\operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)\right)}{36 \sqrt{-x^{4}+x^{2}+2}}+\frac{10\left(\frac{1}{9} x^{3}-\frac{1}{18} x\right)}{\sqrt{-x^{4}+x^{2}+2}}
\end{aligned}
$$

Problem 93: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(5 x^{2}+7\right)\left(-x^{4}+x^{2}+2\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 69 leaves, 8 steps):

$$
\frac{8 \text { EllipticE }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{153}+\frac{\text { EllipticF }\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{102}-\frac{25 \text { EllipticPi }\left(\frac{x \sqrt{2}}{2},-\frac{10}{7}, \mathrm{I} \sqrt{2}\right)}{238}+\frac{x\left(-16 x^{2}+35\right)}{306 \sqrt{-x^{4}+x^{2}+2}}
$$

Result(type 4, 163 leaves):

$$
\begin{aligned}
& \frac{2\left(-\frac{4}{153} x^{3}+\frac{35}{612} x\right)}{\sqrt{-x^{4}+x^{2}+2}}+\frac{\sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticF}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{204 \sqrt{-x^{4}+x^{2}+2}}+\frac{4 \sqrt{2} \sqrt{-2 x^{2}+4} \sqrt{x^{2}+1} \operatorname{EllipticE}\left(\frac{x \sqrt{2}}{2}, \mathrm{I} \sqrt{2}\right)}{153 \sqrt{-x^{4}+x^{2}+2}} \\
& -\frac{25 \sqrt{2} \sqrt{1-\frac{x^{2}}{2}} \sqrt{x^{2}+1} \operatorname{EllipticPi}\left(\frac{x \sqrt{2}}{2},-\frac{10}{7}, \mathrm{I} \sqrt{2}\right)}{238 \sqrt{-x^{4}+x^{2}+2}}
\end{aligned}
$$

Problem 102: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(e x^{2}+d\right)^{3}}{\sqrt{c x^{4}+b x^{2}+a}} d x
$$

Optimal(type 4, 455 leaves, 5 steps):
$\frac{e^{2}(-4 b e+15 c d) x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{2}}+\frac{e^{3} x^{3} \sqrt{c x^{4}+b x^{2}+a}}{5 c}+\frac{e\left(45 c^{2} d^{2}+8 b^{2} e^{2}-3 c e(3 a e+10 b d)\right) x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{5 / 2}\left(\sqrt{a}+x^{2} \sqrt{c}\right)}$

$$
\begin{aligned}
& -\frac{1}{15 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{11 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a ^ { 1 / 4 } e \left(45 c^{2} d^{2}+8 b^{2} e^{2}-3 c e(3 a e\right.\right. \\
& \left.+10 b d)) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)\left(\sqrt{a}+x^{2} \sqrt{c}\right) \sqrt{\left.\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}\right)}\right) \\
& +\frac{1}{30 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{11 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a^{1 / 4 \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{2}}} \sqrt{2} \sqrt{c}}{2}\right)(\sqrt{a}}\right. \\
& \left.+x^{2} \sqrt{c}\right)\left(e\left(45 c^{2} d^{2}+8 b^{2} e^{2}-3 c e(3 a e+10 b d)\right)+\frac{\left(4 a b e^{3}-15 a c d e^{2}+15 c^{2} d^{3}\right) \sqrt{c}}{\sqrt{a}}\right) \sqrt{\left.\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}\right)}
\end{aligned}
$$

Result(type 4, 1185 leaves):

$$
\begin{aligned}
& \frac{d^{3} \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\sqrt{-4}+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}{2}\right)}{2} \\
& 4 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a} \\
& +e^{3}\left(\frac{x^{3} \sqrt{c x^{4}+b x^{2}+a}}{5 c}-\frac{4 b x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{2}}\right. \\
& +\frac{1}{15 c^{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(b a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\frac{1}{2 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(\left(-\frac{3 a}{5 c}\right.\right.} \\
& \left.+\frac{8 b^{2}}{15 c^{2}}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.\right. \\
& \left.\frac{\left.\left.\left.\left.\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right)\right)\right)()\right) ~}{2}\right) \\
& +3 d e^{2}\left(\frac{x \sqrt{c x^{4}+b x^{2}+a}}{3 c}\right. \\
& -\frac{1}{12 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right. \\
& \left.\left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right) \\
& +\frac{1}{3 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(b a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\right. \\
& \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)- \text { EllipticE }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, ~, ~, ~\right.}{2}\right)
\end{aligned}
$$

Problem 108: Unable to integrate problem.

$$
\int\left(b x^{4}+c x^{2}+a\right)^{p} \mathrm{~d} x
$$

Optimal(type 6, 121 leaves, 2 steps):

$$
\frac{x\left(b x^{4}+c x^{2}+a\right)^{p} \text { AppellF1 }\left(\frac{1}{2},-p,-p, \frac{3}{2},-\frac{2 b x^{2}}{c-\sqrt{-4 a b+c^{2}}},-\frac{2 b x^{2}}{c+\sqrt{-4 a b+c^{2}}}\right)}{\left(1+\frac{2 b x^{2}}{c-\sqrt{-4 a b+c^{2}}}\right)^{p}\left(1+\frac{2 b x^{2}}{c+\sqrt{-4 a b+c^{2}}}\right)^{p}}
$$

Result(type 8, 16 leaves):

$$
\int\left(b x^{4}+c x^{2}+a\right)^{p} \mathrm{~d} x
$$

Test results for the 109 problems in "1.2.2.4 (f $x)^{\wedge} m\left(d+e x^{\wedge} 2\right)^{\wedge} q\left(a+b x^{\wedge} 2+c x^{\wedge} 4\right) \wedge p . t x t "$ Problem 18: Result more than twice size of optimal antiderivative.

$$
\int x^{5}\left(e x^{2}+d\right)\left(x^{4}+2 x^{2}+1\right)^{5} \mathrm{~d} x
$$

Optimal(type 1, 55 leaves, 4 steps):

$$
\frac{(d-e)\left(x^{2}+1\right)^{11}}{22}-\frac{(2 d-3 e)\left(x^{2}+1\right)^{12}}{24}+\frac{(d-3 e)\left(x^{2}+1\right)^{13}}{26}+\frac{e\left(x^{2}+1\right)^{14}}{28}
$$

Result(type 1, 129 leaves):

$$
\begin{aligned}
& \frac{e x^{28}}{28}+\frac{(d+10 e) x^{26}}{26}+\frac{(10 d+45 e) x^{24}}{24}+\frac{(45 d+120 e) x^{22}}{22}+\frac{(120 d+210 e) x^{20}}{20}+\frac{(210 d+252 e) x^{18}}{18}+\frac{(252 d+210 e) x^{16}}{16} \\
& \quad+\frac{(210 d+120 e) x^{14}}{14}+\frac{(120 d+45 e) x^{12}}{12}+\frac{(45 d+10 e) x^{10}}{10}+\frac{(10 d+e) x^{8}}{8}+\frac{d x^{6}}{6}
\end{aligned}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int(f x)^{m}\left(x^{2}+1\right)\left(x^{4}+2 x^{2}+1\right)^{5} \mathrm{~d} x
$$

Optimal(type 3, 203 leaves, 3 steps):

$$
\begin{aligned}
& \frac{(f x)^{1+m}}{f(1+m)}+\frac{11(f x)^{3+m}}{f^{3}(3+m)}+\frac{55(f x)^{5+m}}{f^{5}(5+m)}+\frac{165(f x)^{7+m}}{f^{7}(7+m)}+\frac{330(f x)^{9+m}}{f^{9}(9+m)}+\frac{462(f x)^{11+m}}{f^{11}(11+m)}+\frac{462(f x)^{13+m}}{f^{13}(13+m)}+\frac{330(f x)^{15+m}}{f^{15}(15+m)}+\frac{165(f x)^{17+m}}{f^{17}(17+m)} \\
& \quad+\frac{55(f x)^{19+m}}{f^{19}(19+m)}+\frac{11(f x)^{21+m}}{f^{21}(21+m)}+\frac{(f x)^{23+m}}{f^{23}(23+m)}
\end{aligned}
$$

Result(type 3, 1120 leaves):
$\left((f x)^{m}\left(m^{11} x^{22}+121 m^{10} x^{22}+11 m^{11} x^{20}+6435 m^{9} x^{22}+1353 m^{10} x^{20}+197835 m^{8} x^{22}+55 m^{11} x^{18}+72985 m^{9} x^{20}+3889578 m^{7} x^{22}+6875 m^{10} x^{18}\right.\right.$ $+2271555 m^{8} x^{20}+51069018 m^{6} x^{22}+165 m^{11} x^{16}+376365 m^{9} x^{18}+45134958 m^{7} x^{20}+453714470 m^{5} x^{22}+20955 m^{10} x^{16}+11870265 m^{8} x^{18}$ $+597988314 m^{6} x^{20}+2702025590 m^{4} x^{22}+330 m^{11} x^{14}+1164735 m^{9} x^{16}+238653030 m^{7} x^{18}+5353566130 m^{5} x^{20}+10431670821 m^{3} x^{22}+42570 m^{10} x^{14}$ $+37263105 m^{8} x^{16}+3194704590 m^{6} x^{18}+32087153670 m^{4} x^{20}+24372200061 m^{2} x^{22}+462 m^{11} x^{12}+2403390 m^{9} x^{14}+759091410 m^{7} x^{16}$ $+28857216410 m^{5} x^{18}+124530626231 m^{3} x^{20}+29985521895 m x^{22}+60522 m^{10} x^{12}+78076350 m^{8} x^{14}+10282782510 m^{6} x^{16}+174273100210 m^{4} x^{18}$ $+292163767533 m^{2} x^{20}+13749310575 x^{22}+462 m^{11} x^{10}+3471930 m^{9} x^{12}+1613983140 m^{7} x^{14}+93862508190 m^{5} x^{16}+680615362515 m^{3} x^{18}$ $+360568238085 m x^{20}+61446 m^{10} x^{10}+114642990 m^{8} x^{12}+22164925860 m^{6} x^{14}+572017996770 m^{4} x^{16}+1604842704135 m^{2} x^{18}+165646455975 x^{20}$ $+330 m^{11} x^{8}+3582810 m^{9} x^{10}+2408820876 m^{7} x^{12}+204865733820 m^{5} x^{14}+2251106854425 m^{3} x^{16}+1988025402825 m x^{18}+44550 m^{10} x^{8}$ $+120367170 m^{8} x^{10}+33609870756 m^{6} x^{12}+1262375264700 m^{4} x^{14}+5340787250535 m^{2} x^{16}+915414625125 x^{18}+165 m^{11} x^{6}+2640990 m^{9} x^{8}$ $+2575140876 m^{7} x^{10}+315347150580 m^{5} x^{12}+5015196628530 m^{3} x^{14}+6646727085075 m x^{16}+22605 m^{10} x^{6}+90358290 m^{8} x^{8}+36597992508 m^{6} x^{10}$ $+1969992823260 m^{4} x^{12}+11991258123570 m^{2} x^{14}+3069331390125 x^{16}+55 m^{11} x^{4}+1362735 m^{9} x^{6}+1971903780 m^{7} x^{8}+349697552820 m^{5} x^{10}$ $+7921249136262 m^{3} x^{12}+15011348834790 m x^{14}+7645 m^{10} x^{4}+47524455 m^{8} x^{6}+28627538940 m^{6} x^{8}+2222832699780 m^{4} x^{10}+19130651800722 m^{2} x^{12}$ $+6957151150950 x^{14}+11 m^{11} x^{2}+468765 m^{9} x^{4}+1059893010 m^{7} x^{6}+279691771260 m^{5} x^{8}+9079996141062 m^{3} x^{10}+24133835554290 m x^{12}+1551 m^{10} x^{2}$ $+16677375 m^{8} x^{4}+15768085410 m^{6} x^{6}+1818135330660 m^{4} x^{8}+22226933020446 m^{2} x^{10}+11238474936150 x^{12}+m^{11}+96745 m^{9} x^{2}+380801190 m^{7} x^{4}$ $+158293212990 m^{5} x^{6}+7587607623090 m^{3} x^{8}+28336045738770 m x^{10}+143 m^{10}+3514005 m^{8} x^{2}+5825106210 m^{6} x^{4}+1059628145070 m^{4} x^{6}$ $+18930738943710 m^{2} x^{8}+13281834015450 x^{10}+9075 m^{9}+82295598 m^{7} x^{2}+60431072570 m^{5} x^{4}+4558015784025 m^{3} x^{6}+24503570194950 m x^{8}$ $+336765 m^{8}+1298935638 m^{6} x^{2}+420404849150 m^{4} x^{4}+11703493287585 m^{2} x^{6}+11595251918250 x^{8}+8103018 m^{7}+14014513810 m^{5} x^{2}$ $+1889780020755 m^{3} x^{4}+15515657331075 m x^{6}+132426294 m^{6}+102468500970 m^{4} x^{2}+5087634488145 m^{2} x^{4}+7454090518875 x^{6}+1495875590 m^{5}$ $+490955350391 m^{3} x^{2}+7041864340665 m x^{4}+11641582810 m^{4}+1434440867211 m^{2} x^{2}+3478575575475 x^{4}+60936676581 m^{3}+2192684754645 m x^{2}$ $\left.\left.+203363952363 m^{2}+1159525191825 x^{2}+387182170935 m+316234143225\right) x\right) /((1+m)(3+m)(5+m)(7+m)(9+m)(11+m)(13+m)(15$ $+m)(17+m)(19+m)(21+m)(23+m))$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int x^{5}\left(x^{2}+1\right)\left(x^{4}+2 x^{2}+1\right)^{5} d x
$$

Optimal (type 1, 28 leaves, 4 steps):

$$
\frac{\left(x^{2}+1\right)^{12}}{24}-\frac{\left(x^{2}+1\right)^{13}}{13}+\frac{\left(x^{2}+1\right)^{14}}{28}
$$

Result (type 1, 61 leaves):

$$
\frac{1}{28} x^{28}+\frac{11}{26} x^{26}+\frac{55}{24} x^{24}+\frac{15}{2} x^{22}+\frac{33}{2} x^{20}+\frac{77}{3} x^{18}+\frac{231}{8} x^{16}+\frac{165}{7} x^{14}+\frac{55}{4} x^{12}+\frac{11}{2} x^{10}+\frac{11}{8} x^{8}+\frac{1}{6} x^{6}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int x\left(x^{2}+1\right)\left(x^{4}+2 x^{2}+1\right)^{5} \mathrm{~d} x
$$

Optimal(type 1, 9 leaves, 2 steps):

$$
\frac{\left(x^{2}+1\right)^{12}}{24}
$$

Result (type 1, 61 leaves):

$$
\frac{1}{24} x^{24}+\frac{1}{2} x^{22}+\frac{11}{4} x^{20}+\frac{55}{6} x^{18}+\frac{165}{8} x^{16}+33 x^{14}+\frac{77}{2} x^{12}+33 x^{10}+\frac{165}{8} x^{8}+\frac{55}{6} x^{6}+\frac{11}{4} x^{4}+\frac{1}{2} x^{2}
$$

Problem 26: Unable to integrate problem.

$$
\int \frac{(f x)^{m}\left(e x^{2}+d\right)}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 126 leaves, 3 steps):

$$
\frac{(-a e+b d)(f x)^{1+m}}{4 a b f\left(b x^{2}+a\right) \sqrt{\left(b x^{2}+a\right)^{2}}}+\frac{(b d(3-m)+a e(1+m))(f x)^{1+m}\left(b x^{2}+a\right) \text { hypergeom }\left(\left[2, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-\frac{b x^{2}}{a}\right)}{4 a^{3} b f(1+m) \sqrt{\left(b x^{2}+a\right)^{2}}}
$$

Result(type 8, 35 leaves):

$$
\int \frac{(f x)^{m}\left(e x^{2}+d\right)}{\left(b^{2} x^{4}+2 a b x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{5}\left(B x^{2}+A\right)}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 121 leaves, 7 steps):

$$
-\frac{(-A c+b B) x^{2}}{2 c^{2}}+\frac{B x^{4}}{4 c}+\frac{\left(-A b c-a B c+b^{2} B\right) \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{3}}+\frac{\left(2 a A c^{2}-A b^{2} c-3 a b B c+b^{3} B\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{3} \sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 260 leaves):

$$
\begin{aligned}
& \frac{B x^{4}}{4 c}+\frac{A x^{2}}{2 c}-\frac{b B x^{2}}{2 c^{2}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) A b}{4 c^{2}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) a B}{4 c^{2}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{2} B}{4 c^{3}}-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a A}{c \sqrt{4 a c-b^{2}}} \\
& \quad+\frac{3 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a b B}{2 c^{2} \sqrt{4 a c-b^{2}}}+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) A b^{2}}{2 c^{2} \sqrt{4 a c-b^{2}}}-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{3} B}{2 c^{3} \sqrt{4 a c-b^{2}}}
\end{aligned}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{5}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} d x
$$

Optimal(type 3, 137 leaves, 6 steps):

$$
-\frac{x^{2}\left(a(-2 A c+b B)+\left(-A b c-2 a B c+b^{2} B\right) x^{2}\right)}{2 c\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{\left(4 a A c^{2}-6 a b B c+b^{3} B\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{2}\left(-4 a c+b^{2}\right)^{3 / 2}}+\frac{B \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{2}}
$$

Result(type 3, 541 leaves):

$$
\begin{aligned}
& \frac{-\frac{\left(2 a A c^{2}-A b^{2} c-3 a b B c+b^{3} B\right) x^{2}}{c^{2}\left(4 a c-b^{2}\right)}+\frac{a\left(A b c+2 a B c-b^{2} B\right)}{c^{2}\left(4 a c-b^{2}\right)}}{2\left(c x^{4}+b x^{2}+a\right)}+\frac{\ln \left(\left(4 a c-b^{2}\right) c\left(c x^{4}+b x^{2}+a\right)\right) a B}{c\left(4 a c-b^{2}\right)} \\
& -\frac{\ln \left(\left(4 a c-b^{2}\right) c\left(c x^{4}+b x^{2}+a\right)\right) b^{2} B}{4 c^{2}\left(4 a c-b^{2}\right)}+\frac{2 \arctan \left(\frac{2 c^{2}\left(4 a c-b^{2}\right) x^{2}+\left(4 a c-b^{2}\right) b c}{\sqrt{64 a^{3} c^{5}-48 a^{2} b^{2} c^{4}+12 a b^{4} c^{3}-b^{6} c^{2}}}\right) a A c}{\sqrt{64 a^{3} c^{5}-48 a^{2} b^{2} c^{4}+12 a b^{4} c^{3}-b^{6} c^{2}}} \\
& -\frac{3 \arctan \left(\frac{2 c^{2}\left(4 a c-b^{2}\right) x^{2}+\left(4 a c-b^{2}\right) b c}{\sqrt{64 a^{3} c^{5}-48 a^{2} b^{2} c^{4}+12 a b^{4} c^{3}-b^{6} c^{2}}}\right) a b B \quad \arctan \left(\frac{2 c^{2}\left(4 a c-b^{2}\right) x^{2}+\left(4 a c-b^{2}\right) b c}{\sqrt{64 a^{3} c^{5}-48 a^{2} b^{2} c^{4}+12 a b^{4} c^{3}-b^{6} c^{2}}}\right) b^{3} B}{2 \sqrt{64 a^{3} c^{5}-48 a^{2} b^{2} c^{4}+12 a b^{4} c^{3}-b^{6} c^{2}}}+\frac{28 a^{2} b^{2} c^{4}+12 a b^{4} c^{3}-b^{6} c^{2} c}{c}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{B x^{2}+A}{x^{3}\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 209 leaves, 8 steps):

$$
\begin{aligned}
& \frac{6 a A c-2 A b^{2}+a b B}{2 a^{2}\left(-4 a c+b^{2}\right) x^{2}}+\frac{-a b B+A\left(-2 a c+b^{2}\right)+(A b-2 a B) c x^{2}}{2 a\left(-4 a c+b^{2}\right) x^{2}\left(c x^{4}+b x^{2}+a\right)}+\frac{\left(a b B\left(-6 a c+b^{2}\right)-2 A\left(6 a^{2} c^{2}-6 a b^{2} c+b^{4}\right)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 a^{3}\left(-4 a c+b^{2}\right)^{3 / 2}} \\
& \quad-\frac{(2 A b-a B) \ln (x)}{a^{3}}+\frac{(2 A b-a B) \ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{3}}
\end{aligned}
$$

Result(type 3, 990 leaves):

$$
\begin{aligned}
& -\frac{c^{2} x^{2} A}{a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{c x^{2} A b^{2}}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{c x^{2} b B}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{3 A b c}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{A b^{3}}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{B c}{\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{B b^{2}}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{2 c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) A b}{a^{2}\left(4 a c-b^{2}\right)} \\
& -\frac{\ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) A b^{3}}{2 a^{3}\left(4 a c-b^{2}\right)}-\frac{c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) B}{a\left(4 a c-b^{2}\right)}+\frac{\ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{2} B}{4 a^{2}\left(4 a c-b^{2}\right)} \\
& -\frac{6 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) A c^{2} \quad 6 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) A b^{2} c}{} \\
& a \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}} \quad a^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}
\end{aligned}
$$

$$
\begin{aligned}
& a^{3} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}} \\
& a \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}} \\
& +\frac{\arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) B b^{3}}{2 a^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}-\frac{A}{2 a^{2} x^{2}}-\frac{2 \ln (x) A b}{a^{3}}+\frac{\ln (x) B}{a^{2}}
\end{aligned}
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{6}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 377 leaves, 6 steps):

$$
\begin{aligned}
& \frac{\left(-A b c-10 a B c+3 b^{2} B\right) x}{2 c^{2}\left(-4 a c+b^{2}\right)}-\frac{(-2 A c+b B) x^{3}}{2 c\left(-4 a c+b^{2}\right)}-\frac{x^{5}\left(A b-2 a B-(-2 A c+b B) x^{2}\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)} \\
& \quad \arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(3 b^{3} B-A b^{2} c-13 a b B c+6 a A c^{2}+\frac{-8 a A b c^{2}+A b^{3} c-20 a^{2} B c^{2}+19 a b^{2} B c-3 b^{4} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}
\end{aligned}
$$

$$
4 c^{5 / 2}\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}
$$

$$
-\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(3 b^{3} B-A b^{2} c-13 a b B c+6 a A c^{2}+\frac{8 a A b c^{2}-A b^{3} c+20 a^{2} B c^{2}-19 a b^{2} B c+3 b^{4} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4 c^{5 / 2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}
$$

Result(type ?, 4262 leaves): Display of huge result suppressed!
Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 293 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{(-2 A c+b B) x}{2 c\left(-4 a c+b^{2}\right)}-\frac{x^{3}\left(A b-2 a B-(-2 A c+b B) x^{2}\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)} \\
& \quad+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b^{2} B+A b c-6 a B c+\frac{-4 a A c^{2}-A b^{2} c+8 a b B c-b^{3} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4 c^{3 / 2}\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& \quad+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b^{2} B+A b c-6 a B c+\frac{4 a A c^{2}+A b^{2} c-8 a b B c+b^{3} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4 c^{3 / 2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type ?, 4008 leaves): Display of huge result suppressed!
Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} d x
$$

Optimal(type 3, 234 leaves, 4 steps):

$$
\begin{aligned}
& -\frac{x\left(A b-2 a B-(-2 A c+b B) x^{2}\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b B-2 A c+\frac{4 A b c-4 a B c-b^{2} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& \quad \arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b B-2 A c+\frac{-4 A b c+4 a B c+b^{2} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2} \\
& +\frac{4\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b+\sqrt{-4 a c+b^{2}}}}{}
\end{aligned}
$$

Result(type ?, 2994 leaves): Display of huge result suppressed!

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{B x^{2}+A}{x^{2}\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 337 leaves, 5 steps):
$\frac{10 a A c-3 A b^{2}+a b B}{2 a^{2}\left(-4 a c+b^{2}\right) x}+\frac{-a b B+A\left(-2 a c+b^{2}\right)+(A b-2 a B) c x^{2}}{2 a\left(-4 a c+b^{2}\right) x\left(c x^{4}+b x^{2}+a\right)}$

$$
4 a^{2}\left(-4 a c+b^{2}\right)^{3 / 2} \sqrt{b-\sqrt{-4 a c+b^{2}}}
$$

$-\underline{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(3 A b^{2}-a b B-10 a A c+\frac{a B\left(-12 a c+b^{2}\right)-A\left(-16 a b c+3 b^{3}\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}$

$$
4 a^{2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}
$$

Result(type ?, 3751 leaves): Display of huge result suppressed!
Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{11}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 351 leaves, 8 steps):

$$
\begin{aligned}
& \frac{\left(7 a A b c^{2}-A b^{3} c+30 a^{2} B c^{2}-21 a b^{2} B c+3 b^{4} B\right) x^{2}}{2 c^{3}\left(-4 a c+b^{2}\right)^{2}}-\frac{x^{8}\left(a(-2 A c+b B)+\left(-A b c-2 a B c+b^{2} B\right) x^{2}\right)}{4 c\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}} \\
& -\frac{x^{4}\left(a\left(16 a A c^{2}-A b^{2} c-18 a b B c+3 b^{3} B\right)+\left(10 a A b c^{2}-A b^{3} c+20 a^{2} B c^{2}-20 a b^{2} B c+3 b^{4} B\right) x^{2}\right)}{4 c^{2}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)} \\
& -\frac{\left(-30 a^{2} A b c^{3}+10 a A b^{3} c^{2}-A b^{5} c-60 a^{3} B c^{3}+90 a^{2} b^{2} B c^{2}-30 a b^{4} B c+3 b^{6} B\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{4}\left(-4 a c+b^{2}\right)^{5 / 2}}-\frac{(-A c+3 b B) \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{4}}
\end{aligned}
$$

Result(type ?, 2915 leaves): Display of huge result suppressed!
Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{7}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 138 leaves, 5 steps):

$$
-\frac{x^{6}\left(A b-2 a B-(-2 A c+b B) x^{2}\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{3(A b-2 a B) x^{2}\left(b x^{2}+2 a\right)}{4\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}+\frac{3 a(A b-2 a B) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{5 / 2}}
$$

Result(type 3, 397 leaves):
$\frac{1}{2\left(c x^{4}+b x^{2}+a\right)^{2}}\left(-\frac{\left(3 a A b c^{2}+10 a^{2} B c^{2}-8 a b^{2} B c+b^{4} B\right) x^{6}}{c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{\left(16 A a^{2} c^{3}+A a b^{2} c^{2}+A b^{4} c-2 B a^{2} b c^{2}-8 B a b^{3} c+B b^{5}\right) x^{4}}{2\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) c^{2}}\right.$

$$
\begin{aligned}
& \left.-\frac{a\left(5 a A b c^{2}+A b^{3} c+6 a^{2} B c^{2}-10 a b^{2} B c+b^{4} B\right) x^{2}}{c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{a^{2}\left(8 a A c^{2}+A b^{2} c-10 a b B c+b^{3} B\right)}{2 c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}\right)-\frac{3 a \arctan \left(\frac{2 c x^{2}+b}{\left.\sqrt{4 a c-b^{2}}\right) A b}\right.}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) \sqrt{4 a c-b^{2}}} \\
& +\frac{6 a^{2} \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) B}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) \sqrt{4 a c-b^{2}}}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{B x^{2}+A}{x^{3}\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 349 leaves, 9 steps):
$\frac{a b B\left(-7 a c+b^{2}\right)-3 A\left(10 a^{2} c^{2}-7 a b^{2} c+b^{4}\right)}{2 a^{3}\left(-4 a c+b^{2}\right)^{2} x^{2}}+\frac{-a b B+A\left(-2 a c+b^{2}\right)+(A b-2 a B) c x^{2}}{4 a\left(-4 a c+b^{2}\right) x^{2}\left(c x^{4}+b x^{2}+a\right)^{2}}$
$+\frac{-a b B\left(-10 a c+b^{2}\right)+A\left(20 a^{2} c^{2}-20 a b^{2} c+3 b^{4}\right)-c\left(a B\left(-16 a c+b^{2}\right)-3 A\left(-6 a b c+b^{3}\right)\right) x^{2}}{4 a^{2}\left(-4 a c+b^{2}\right)^{2} x^{2}\left(c x^{4}+b x^{2}+a\right)}$

$$
\begin{aligned}
& +\frac{\left(a b B\left(30 a^{2} c^{2}-10 a b^{2} c+b^{4}\right)-3 A\left(-20 a^{3} c^{3}+30 a^{2} b^{2} c^{2}-10 a b^{4} c+b^{6}\right)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 a^{4}\left(-4 a c+b^{2}\right)^{5 / 2}}-\frac{(3 A b-a B) \ln (x)}{a^{4}} \\
& +\frac{(3 A b-a B) \ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{4}}
\end{aligned}
$$

Result(type ?, 2723 leaves): Display of huge result suppressed!
Problem 40: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{6}\left(B x^{2}+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{3}} d x
$$

Optimal(type 3, 415 leaves, 6 steps):

$$
\begin{array}{r}
-\frac{\left(-12 A b c+20 a B c+b^{2} B\right) x}{8 c\left(-4 a c+b^{2}\right)^{2}}-\frac{x^{5}\left(A b-2 a B-(-2 A c+b B) x^{2}\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}-\frac{x^{3}\left(5 A b^{2}-12 a b B+4 a A c-\left(-12 A b c+20 a B c+b^{2} B\right) x^{2}\right)}{8\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)} \\
+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b^{3} B+3 A b^{2} c-16 a b B c+12 a A c^{2}+\frac{-36 a A b c^{2}-3 A b^{3} c+40 a^{2} B c^{2}+18 a b^{2} B c-b^{4} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{16 c^{3 / 2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b^{3} B+3 A b^{2} c-16 a b B c+12 a A c^{2}+\frac{36 a A b c^{2}+3 A b^{3} c-40 a^{2} B c^{2}-18 a b^{2} B c+b^{4} B}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{16 c^{3 / 2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{array}
$$

Result(type ?, 9167 leaves): Display of huge result suppressed!
Problem 53: Unable to integrate problem.

$$
\int \sqrt{f x}\left(e x^{2}+d\right) \sqrt{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 6, 245 leaves, 6 steps):
$\underline{2 d(f x)^{3 / 2} \text { AppellF1 }\left(\frac{3}{4},-\frac{1}{2},-\frac{1}{2}, \frac{7}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}$

$$
3 f \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}
$$

$$
+\frac{2 e(f x)^{7 / 2} \text { AppellF1 }\left(\frac{7}{4},-\frac{1}{2},-\frac{1}{2}, \frac{11}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{7 f^{3} \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 144 leaves):

$$
\frac{2 x^{2}\left(7 c e x^{2}+2 b e+11 c d\right) \sqrt{c x^{4}+b x^{2}+a} f}{77 c \sqrt{f x}}+\frac{\left(\int-\frac{2 x\left(-14 a c e x^{2}+5 b^{2} e x^{2}-11 b c d x^{2}+3 a b e-22 a d c\right)}{77 c \sqrt{\left(c x^{4}+b x^{2}+a\right) f x}} \mathrm{~d} x\right) f \sqrt{\left(c x^{4}+b x^{2}+a\right) f x}}{\sqrt{f x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Problem 54: Unable to integrate problem.

$$
\int \frac{\left(e x^{2}+d\right) \sqrt{c x^{4}+b x^{2}+a}}{(f x)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 245 leaves, 6 steps):
$\underline{2 e(f x)^{3 / 2} \text { AppellFI }\left(\frac{3}{4},-\frac{1}{2},-\frac{1}{2}, \frac{7}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}$

$$
3 f^{3} \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}
$$

$$
-\frac{2 \text { d AppellF1 }\left(-\frac{1}{4},-\frac{1}{2},-\frac{1}{2}, \frac{3}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{}
$$

Result(type 8, 119 leaves):

$$
f \sqrt{f x} \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}
$$

$$
-\frac{2 \sqrt{c x^{4}+b x^{2}+a}\left(-e x^{2}+7 d\right)}{7 f \sqrt{f x}}+\frac{\left(\int \frac{2 x\left(b e x^{2}+14 c d x^{2}+2 a e+7 b d\right)}{7 \sqrt{\left(c x^{4}+b x^{2}+a\right) f x}} \mathrm{~d} x\right) \sqrt{\left(c x^{4}+b x^{2}+a\right) f x}}{f \sqrt{f x} \sqrt{c x^{4}+b x^{2}+a}}
$$

Problem 55: Unable to integrate problem.

$$
\int(f x)^{3 / 2}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 6, 247 leaves, 6 steps):

$$
\begin{array}{r}
\frac{2 a d(f x)^{5 / 2} \text { AppellF1 }\left(\frac{5}{4},-\frac{3}{2},-\frac{3}{2}, \frac{9}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{5 f \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}} \\
+\frac{2 a e(f x)^{9 / 2} \text { AppellF1 }\left(\frac{9}{4},-\frac{3}{2},-\frac{3}{2}, \frac{13}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{9 f^{3} \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}
\end{array}
$$

Result(type 8, 348 leaves):
$\frac{1}{69615 c^{3} \sqrt{f x}}\left(2\left(3315 e x^{8} c^{4}+4485 b c^{3} e x^{6}+4095 c^{4} d x^{6}+6375 a c^{3} e x^{4}+180 b^{2} c^{2} e x^{4}+5985 b c^{3} d x^{4}+1200 a b c^{2} e x^{2}+9555 a c^{3} d x^{2}-220 b^{3} c e x^{2}\right.\right.$ $\left.\left.+420 b^{2} c^{2} d x^{2}+2448 a^{2} e c^{2}-2004 a b^{2} c e+3696 a b d c^{2}+308 b^{4} e-588 b^{3} c d\right) \sqrt{c x^{4}+b x^{2}+a} x f^{2}\right)+\frac{1}{\sqrt{f x} \sqrt{c x^{4}+b x^{2}+a}}\left(\left(\int\right.\right.$
\qquad (4 (3336 $a^{2} b c^{2} e x^{2}-5460 a^{2} c^{3} d x^{2}-1778 a b^{3} c e x^{2}+3297 a b^{2} c^{2} d x^{2}+231 b^{5} e x^{2}-441 b^{4} c d x^{2}+612 a^{3} c^{2} e$ $69615 c^{3} \sqrt{\left(c x^{4}+b x^{2}+a\right) f x}$
$\left.\left.\left.\left.-501 a^{2} b^{2} c e+924 a^{2} b c^{2} d+77 a b^{4} e-147 a b^{3} c d\right)\right) \mathrm{d} x\right) f^{2} \sqrt{\left(c x^{4}+b x^{2}+a\right) f x}\right)$

Problem 56: Unable to integrate problem.

$$
\int \frac{\sqrt{f x}\left(e x^{2}+d\right)}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 251 leaves, 6 steps):
$2 d(f x)^{3 / 2}$ AppellF1 $\left(\frac{3}{4}, \frac{3}{2}, \frac{3}{2}, \frac{7}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}$

$$
3 a f \sqrt{c x^{4}+b x^{2}+a}
$$

$$
+\frac{2 e(f x)^{7 / 2} \text { AppellF1 }\left(\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{11}{4},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}{7 a f^{3} \sqrt{c x^{4}+b x^{2}+a}}
$$

Result(type 8, 29 leaves):

$$
\int \frac{\sqrt{f x}\left(e x^{2}+d\right)}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 57: Result more than twice size of optimal antiderivative.

$$
\int(f x)^{m}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 243 leaves, 2 steps):

$$
\begin{aligned}
& \frac{a^{3} d(f x)^{1+m}}{f(1+m)}+\frac{a^{2}(a e+3 b d)(f x)^{3+m}}{f^{3}(3+m)}+\frac{3 a\left(a b e+a d c+b^{2} d\right)(f x)^{5+m}}{f^{5}(5+m)}+\frac{\left(3 a^{2} c e+3 a b^{2} e+6 a b c d+b^{3} d\right)(f x)^{7+m}}{f^{7}(7+m)} \\
& \quad+\frac{\left(6 a b c e+3 a c^{2} d+b^{3} e+3 b^{2} c d\right)(f x)^{9+m}}{f^{9}(9+m)}+\frac{3 c\left(a c e+b^{2} e+b c d\right)(f x)^{11+m}}{f^{11}(11+m)}+\frac{c^{2}(3 b e+c d)(f x)^{13+m}}{f^{13}(13+m)}+\frac{c^{3} e(f x)^{15+m}}{f^{15}(15+m)}
\end{aligned}
$$

Result(type 3, 1934 leaves):
$\frac{1}{(1+m)(3+m)(5+m)(7+m)(9+m)(11+m)(13+m)(15+m)}\left(x\left(c^{3} e m^{7} x^{14}+49 c^{3} e m^{6} x^{14}+3 b c^{2} e m^{7} x^{12}+c^{3} d m^{7} x^{12}+973 c^{3} e m^{5} x^{14}\right.\right.$
$+153 b c^{2} e m^{6} x^{12}+51 c^{3} d m^{6} x^{12}+10045 c^{3} e m^{4} x^{14}+3 a c^{2} e m^{7} x^{10}+3 b^{2} c e m^{7} x^{10}+3 b c^{2} d m^{7} x^{10}+3135 b c^{2} e m^{5} x^{12}+1045 c^{3} d m^{5} x^{12}$
$+57379 c^{3}{e m^{3}}^{14}+159 a c^{2} e m^{6} x^{10}+159 b^{2} c e m^{6} x^{10}+159 b c^{2} d m^{6} x^{10}+33165 b c^{2} e m^{4} x^{12}+11055 c^{3} d m^{4} x^{12}+177331 c^{3} e m^{2} x^{14}+6 a b c e m^{7} x^{8}$
$+3 a c^{2} d m^{7} x^{8}+3375 a c^{2} e m^{5} x^{10}+b^{3} e m^{7} x^{8}+3 b^{2} c d m^{7} x^{8}+3375 b^{2} c e m^{5} x^{10}+3375 b c^{2} d m^{5} x^{10}+193017 b c^{2} e m^{3} x^{12}+64339 c^{3} d m^{3} x^{12}$

$$
\begin{aligned}
& +264207 c^{3} e m x^{14}+330 a b c e m^{6} x^{8}+165 a c^{2} d m^{6} x^{8}+36795 a c^{2} e m^{4} x^{10}+55 b^{3} e m^{6} x^{8}+165 b^{2} c d m^{6} x^{8}+36795 b^{2} c e m^{4} x^{10}+36795 b c^{2} d m^{4} x^{10} \\
& +604827 b c^{2} e m^{2} x^{12}+201609 c^{3} d m^{2} x^{12}+135135 e c^{3} x^{14}+3 a^{2} c e m^{7} x^{6}+3 a b^{2} e m^{7} x^{6}+6 a b c d m^{7} x^{6}+7278 a b c e m^{5} x^{8}+3639 a c^{2} d m^{5} x^{8} \\
& +219417 a c^{2} e m^{3} x^{10}+b^{3} d m^{7} x^{6}+1213 b^{3} e m^{5} x^{8}+3639 b^{2} c d m^{5} x^{8}+219417 b^{2} c e m^{3} x^{10}+219417 b c^{2} d m^{3} x^{10}+909765 b c^{2} e m x^{12}+303255 c^{3} d m x^{12} \\
& +171 a^{2} c e m^{6} x^{6}+171 a b^{2} e m^{6} x^{6}+342 a b c d m^{6} x^{6}+82338 a b c e m^{4} x^{8}+41169 a c^{2} d m^{4} x^{8}+700461 a c^{2} e m^{2} x^{10}+57 b^{3} d m^{6} x^{6}+13723 b^{3} e m^{4} x^{8} \\
& +41169 b^{2} c d m^{4} x^{8}+700461 b^{2} \text { cem } m^{2} x^{10}+700461 b c^{2} d m^{2} x^{10}+467775 b c^{2} e x^{12}+155925 c^{3} d x^{12}+3 a^{2} b e m^{7} x^{4}+3 a^{2} c d m^{7} x^{4}+3927 a^{2} c e m^{5} x^{6} \\
& +3 a b^{2} d m^{7} x^{4}+3927 a b^{2} e m^{5} x^{6}+7854 a b c d m^{5} x^{6}+507282 a b c e m^{3} x^{8}+253641 a c^{2} d m^{3} x^{8}+1067445 a c^{2} e m x^{10}+1309 b^{3} d m^{5} x^{6}+84547 b^{3} e m^{3} x^{8} \\
& +253641 b^{2} c d m^{3} x^{8}+1067445 b^{2} c e m x^{10}+1067445 b c^{2} d m x^{10}+177 a^{2} b e m^{6} x^{4}+177 a^{2} c d m^{6} x^{4}+46431 a^{2} c e m^{4} x^{6}+177 a b^{2} d m^{6} x^{4} \\
& +46431 a b^{2} e m^{4} x^{6}+92862 a b c d m^{4} x^{6}+1662558 a b c e m^{2} x^{8}+831279 a c^{2} d m^{2} x^{8}+552825 a c^{2} e x^{10}+15477 b^{3} d m^{4} x^{6}+277093 b^{3} e m^{2} x^{8} \\
& +831279 b^{2} c d m^{2} x^{8}+552825 b^{2} c e x^{10}+552825 b c^{2} d x^{10}+a^{3} e m^{7} x^{2}+3 a^{2} b d m^{7} x^{2}+4239 a^{2} b e m^{5} x^{4}+4239 a^{2} c d m^{5} x^{4}+299145 a^{2} c e m^{3} x^{6} \\
& +4239 a b^{2} d m^{5} x^{4}+299145 a b^{2} e m^{3} x^{6}+598290 a b c d m^{3} x^{6}+2582010 a b c e m x^{8}+1291005 a c^{2} d m x^{8}+99715 b^{3} d m^{3} x^{6}+430335 b^{3} e m x^{8} \\
& +1291005 b^{2} c d m x^{8}+61 a^{3} e m^{6} x^{2}+183 a^{2} b d m^{6} x^{2}+52725 a^{2} b e m^{4} x^{4}+52725 a^{2} c d m^{4} x^{4}+1020033 a^{2} c e m^{2} x^{6}+52725 a b^{2} d m^{4} x^{4} \\
& +1020033 a b^{2} e m^{2} x^{6}+2040066 a b c d m^{2} x^{6}+1351350 a b c e x^{8}+675675 a c^{2} d x^{8}+340011 b^{3} d m^{2} x^{6}+225225 b^{3} e x^{8}+675675 b^{2} c d x^{8}+a^{3} d m^{7} \\
& +1525 a^{3} e m^{5} x^{2}+4575 a^{2} b d m^{5} x^{2}+360537 a^{2} b e m^{3} x^{4}+360537 a^{2} c d m^{3} x^{4}+1632285 a^{2} c e m x^{6}+360537 a b^{2} d m^{3} x^{4}+1632285 a b^{2} e m x^{6} \\
& +3264570 a b c d m x^{6}+544095 b^{3} d m x^{6}+63 a^{3} d m^{6}+20065 a^{3} e m^{4} x^{2}+60195 a^{2} b d m^{4} x^{2}+1311363 a^{2} b e m^{2} x^{4}+1311363 a^{2} c d m^{2} x^{4}+868725 a^{2} c e x^{6} \\
& +1311363 a b^{2} d m^{2} x^{4}+868725 a b^{2} e x^{6}+1737450 a b c d x^{6}+289575 b^{3} d x^{6}+1645 a^{3} d m^{5}+147859 a^{3} e m^{3} x^{2}+443577 a^{2} b d m^{3} x^{2}+2215701 a^{2} b e m x^{4} \\
& +2215701 a^{2} c d m x^{4}+2215701 a b^{2} d m x^{4}+22995 a^{3} d m^{4}+594439 a^{3} e m^{2} x^{2}+1783317 a^{2} b d m^{2} x^{2}+1216215 a^{2} b e x^{4}+1216215 a^{2} c d x^{4} \\
& +1216215 a b^{2} d x^{4}+185059 a^{3} d m^{3}+1140855 a^{3} e m x^{2}+3422565 a^{2} b d m x^{2}+852957 a^{3} d m^{2}+675675 a^{3} e x^{2}+2027025 a^{2} b d x^{2}+2071215 a^{3} d m \\
& \left.\left.+2027025 d a^{3}\right)(f x)^{m}\right)
\end{aligned}
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int(f x)^{m}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 155 leaves, 2 steps):

$$
\begin{aligned}
& \frac{a^{2} d(f x)^{1+m}}{f(1+m)}+\frac{a(a e+2 b d)(f x)^{3+m}}{f^{3}(3+m)}+\frac{\left(2 a b e+2 a d c+b^{2} d\right)(f x)^{5+m}}{f^{5}(5+m)}+\frac{\left(2 a c e+b^{2} e+2 b c d\right)(f x)^{7+m}}{f^{7}(7+m)}+\frac{c(2 b e+c d)(f x)^{9+m}}{f^{9}(9+m)} \\
& \quad+\frac{c^{2} e(f x)^{11+m}}{f^{11}(11+m)}
\end{aligned}
$$

Result(type 3, 782 leaves):
$\frac{1}{(11+m)(9+m)(7+m)(5+m)(3+m)(1+m)}\left(x\left(c^{2} e m^{5} x^{10}+25 c^{2} e m^{4} x^{10}+2 b c e m^{5} x^{8}+c^{2} d m^{5} x^{8}+230 c^{2} e m^{3} x^{10}+54 b c e m^{4} x^{8}+27 c^{2} d m^{4} x^{8}\right.\right.$
$+950 c^{2} e m^{2} x^{10}+2 a c e m^{5} x^{6}+b^{2} e m^{5} x^{6}+2 b c d m^{5} x^{6}+524 b c e m^{3} x^{8}+262 c^{2} d m^{3} x^{8}+1689 c^{2} e m x^{10}+58 a c e m^{4} x^{6}+29 b^{2} e m^{4} x^{6}+58 b c d m^{4} x^{6}$ $+2244 b c \operatorname{cm}^{2} x^{8}+1122 c^{2} d m^{2} x^{8}+945 c^{2} e x^{10}+2 a b e m^{5} x^{4}+2 a c d m^{5} x^{4}+604 a c e m^{3} x^{6}+b^{2} d m^{5} x^{4}+302 b^{2} e m^{3} x^{6}+604 b c d m^{3} x^{6}+4082 b c e m x^{8}$
$+2041 c^{2} d m x^{8}+62 a b e m^{4} x^{4}+62 a c d m^{4} x^{4}+2732 a c e m^{2} x^{6}+31 b^{2} d m^{4} x^{4}+1366 b^{2} e m^{2} x^{6}+2732 b c d m^{2} x^{6}+2310 b c e x^{8}+1155 c^{2} d x^{8}+a^{2} e m^{5} x^{2}$
$+2 a b d m^{5} x^{2}+700 a b e m^{3} x^{4}+700 a c d m^{3} x^{4}+5154 a c e m x^{6}+350 b^{2} d m^{3} x^{4}+2577 b^{2} e m x^{6}+5154 b c d m x^{6}+33 a^{2} e m^{4} x^{2}+66 a b d m^{4} x^{2}$
$+3460 a b m^{2} x^{4}+3460 a c d m^{2} x^{4}+2970 a c e x^{6}+1730 b^{2} d m^{2} x^{4}+1485 b^{2} e x^{6}+2970 b c d x^{6}+a^{2} d m^{5}+406 a^{2} e m^{3} x^{2}+812 a b d m^{3} x^{2}$
$+6978 a b e m x^{4}+6978 a c d m x^{4}+3489 b^{2} d m x^{4}+35 a^{2} d m^{4}+2262 a^{2} e m^{2} x^{2}+4524 a b d m^{2} x^{2}+4158 a b e x^{4}+4158 a c d x^{4}+2079 b^{2} d x^{4}$ $\left.\left.+470 a^{2} d m^{3}+5353 a^{2} e m x^{2}+10706 a b d m x^{2}+3010 a^{2} d m^{2}+3465 a^{2} x^{2} e+6930 a b d x^{2}+9129 a^{2} d m+10395 d a^{2}\right)(f x)^{m}\right)$

Problem 59: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 6, 275 leaves, 6 steps):
$\underline{\text { ad }(f x)^{1+m} \text { AppellF1 }\left(\frac{1}{2}+\frac{m}{2},-\frac{3}{2},-\frac{3}{2}, \frac{3}{2}+\frac{m}{2},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}$

$$
f(1+m) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}
$$

$$
+\frac{a e(f x)^{3+m} \text { AppellF1 }\left(\frac{3}{2}+\frac{m}{2},-\frac{3}{2},-\frac{3}{2}, \frac{5}{2}+\frac{m}{2},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{4}+b x^{2}+a}}{f^{3}(3+m) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 29 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2} \mathrm{~d} x
$$

Problem 60: Unable to integrate problem.

$$
\int \frac{(f x)^{m}\left(e x^{2}+d\right)}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} d x
$$

Optimal(type 6, 279 leaves, 6 steps):

$$
d(f x)^{1+m} \text { AppellF1 }\left(\frac{1}{2}+\frac{m}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}+\frac{m}{2},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}
$$

$$
a f(1+m) \sqrt{c x^{4}+b x^{2}+a}
$$

$$
+\frac{e(f x)^{3+m} \text { AppellF1 }\left(\frac{3}{2}+\frac{m}{2}, \frac{3}{2}, \frac{3}{2}, \frac{5}{2}+\frac{m}{2},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}} \sqrt{1+\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}}} \sqrt{\sqrt{-4}}}{\sqrt{2}}
$$

$$
a f^{3}(3+m) \sqrt{c x^{4}+b x^{2}+a}
$$

Result(type 8, 29 leaves):

$$
\int \frac{(f x)^{m}\left(e x^{2}+d\right)}{\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 72: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{\left(-x^{2}+1\right) \sqrt{x^{4}-1}} d x
$$

Optimal(type 4, 45 leaves, 4 steps):

$$
\frac{x\left(x^{2}+1\right)}{2 \sqrt{x^{4}-1}}-\frac{\operatorname{EllipticE}(x, \mathrm{I}) \sqrt{-x^{2}+1} \sqrt{x^{2}+1}}{2 \sqrt{x^{4}-1}}
$$

Result(type 4, 133 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I} \sqrt{x^{2}+1} \sqrt{-x^{2}+1} \operatorname{EllipticF}(\mathrm{I} x, \mathrm{I})}{2 \sqrt{x^{4}-1}}+\frac{x^{3}+x^{2}+x+1}{4 \sqrt{(x-1)\left(x^{3}+x^{2}+x+1\right)}}+\frac{\left.\mathrm{I} \sqrt{x^{2}+1} \sqrt{-x^{2}+1}(\text { EllipticF }(\mathrm{I} x, \mathrm{I})-\text { EllipticE(I } x, \mathrm{I})\right)}{2 \sqrt{x^{4}-1}} \\
& \quad+\frac{x^{3}-x^{2}+x-1}{4 \sqrt{(x+1)\left(x^{3}-x^{2}+x-1\right)}}
\end{aligned}
$$

Problem 79: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{9}}{\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 216 leaves, 7 steps):

$$
\begin{gathered}
-\frac{(b e+c d) x^{2}}{2 c^{2} e^{2}}+\frac{x^{4}}{4 c e}+\frac{d^{4} \ln \left(e x^{2}+d\right)}{2 e^{3}\left(a e^{2}-b d e+c d^{2}\right)}-\frac{\left(a^{2} c e-a b^{2} e-2 a b c d+b^{3} d\right) \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{3}\left(a e^{2}-b d e+c d^{2}\right)} \\
-\frac{\left(3 a^{2} b c e+2 a^{2} c^{2} d-a b^{3} e-4 a b^{2} c d+b^{4} d\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{3}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{-4 a c+b^{2}}}
\end{gathered}
$$

Result(type 3, 537 leaves):

$$
\begin{aligned}
\frac{x^{4}}{4 c e} & -\frac{x^{2} b}{2 c^{2} e}-\frac{x^{2} d}{2 c e^{2}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) a^{2} e}{4\left(a e^{2}-b d e+c d^{2}\right) c^{2}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) a b^{2} e}{4\left(a e^{2}-b d e+c d^{2}\right) c^{3}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) a b d}{2\left(a e^{2}-b d e+c d^{2}\right) c^{2}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{3} d}{4\left(a e^{2}-b d e+c d^{2}\right) c^{3}} \\
& +\frac{3 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a^{2} b e}{2\left(a e^{2}-b d e+c d^{2}\right) c^{2} \sqrt{4 a c-b^{2}}}+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a^{2} d}{\left(a e^{2}-b d e+c d^{2}\right) c \sqrt{4 a c-b^{2}}}-\frac{2 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a b^{2} d}{\left(a e^{2}-b d e+c d^{2}\right) c^{2} \sqrt{4 a c-b^{2}}} \\
& -\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{4} d}{2\left(a e^{2}-b d e+c d^{2}\right) c^{3} \sqrt{4 a c-b^{2}}}+\frac{\operatorname{arcta}}{2\left(a e^{2}-b d e+c d^{2}\right) c^{3} \sqrt{4 a c-b^{2}}}+\frac{d^{4} \ln \left(e x^{2}+d\right)}{2 e^{3}\left(a e^{2}-b d e+c d^{2}\right)}
\end{aligned}
$$

[^2]$$
\int \frac{1}{x^{5}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 254 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{1}{4 a d x^{4}}+\frac{a e+b d}{2 a^{2} d^{2} x^{2}}+\frac{\left(b^{2} d^{2}+a b d e-a\left(-a e^{2}+c d^{2}\right)\right) \ln (x)}{a^{3} d^{3}}-\frac{e^{4} \ln \left(e x^{2}+d\right)}{2 d^{3}\left(a e^{2}-b d e+c d^{2}\right)}-\frac{\left(2 a b c e-a c^{2} d-b^{3} e+b^{2} c d\right) \ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{3}\left(a e^{2}-b d e+c d^{2}\right)} \\
& +\frac{\left(-2 a^{2} e c^{2}+4 a b^{2} c e-3 a b d c^{2}-b^{4} e+b^{3} c d\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 a^{3}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{-4 a c+b^{2}}}
\end{aligned}
$$

Result(type 3, 583 leaves):

$$
\begin{aligned}
& -\frac{c \ln \left(c x^{4}+b x^{2}+a\right) b e}{2 a^{2}\left(a e^{2}-b d e+c d^{2}\right)}+\frac{c^{2} \ln \left(c x^{4}+b x^{2}+a\right) d}{4 a^{2}\left(a e^{2}-b d e+c d^{2}\right)}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{3} e}{4 a^{3}\left(a e^{2}-b d e+c d^{2}\right)}-\frac{c \ln \left(c x^{4}+b x^{2}+a\right) b^{2} d}{4 a^{3}\left(a e^{2}-b d e+c d^{2}\right)}+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) e c^{2}}{a\left(a e^{2}-b d e+c d^{2}\right) \sqrt{4 a c-b^{2}}} \\
& \quad-\frac{2 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{2} c e}{a^{2}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{4 a c-b^{2}}}+\frac{2 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b d c^{2}}{2 a^{2}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{4 a c-b^{2}}}+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{4} e}{2 a^{3}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{4 a c-b^{2}}} \\
& \quad-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{3} c d}{2 a^{3}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{4 a c-b^{2}}}-\frac{1}{4 a d x^{4}}+\frac{e}{2 d^{2} a x^{2}}+\frac{b}{2 d a^{2} x^{2}}+\frac{\ln (x) e^{2}}{d^{3} a}+\frac{\ln (x) b e}{d^{2} a^{2}}-\frac{\ln (x) c}{d a^{2}}+\frac{\ln (x) b^{2}}{d a^{3}}-\frac{e^{4} \ln \left(e x^{2}+d\right)}{2 d^{3}\left(a e^{2}-b d e+c d^{2}\right)}
\end{aligned}
$$

Problem 82: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{4}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 303 leaves, 6 steps):
$-\frac{1}{3 a d x^{3}}+\frac{a e+b d}{a^{2} d^{2} x}+\frac{e^{7 / 2} \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right)}{d^{5 / 2}\left(a e^{2}-b d e+c d^{2}\right)}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\left.\sqrt{b-\sqrt{-4 a c+b^{2}}}\right) \sqrt{c}\left(b c d-b^{2} e+a c e+\frac{3 a b c e-2 a c^{2} d-b^{3} e+b^{2} c d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}\right.}{2 a^{2}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}}$

$$
+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b c d-b^{2} e+a c e+\frac{-3 a b c e+2 a c^{2} d+b^{3} e-b^{2} c d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 a^{2}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}
$$

Result(type 3, 1159 leaves):

$$
\begin{aligned}
& -\frac{c^{2} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) e}{2\left(a e^{2}-b d e+c d^{2}\right) a \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{2} e}{2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}} \\
& -\frac{c^{2} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b d}{2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{3 c^{2} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b e}{2\left(a e^{2}-b d e+c d^{2}\right) a \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}} \\
& +\frac{c^{3} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) d}{\left(a e^{2}-b d e+c d^{2}\right) a \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b^{3} e}{2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c} \quad 2\left(a e^{2}-b d e+c d^{2}\right) a \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c} \\
& c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{2} e \quad c^{2} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b d \\
& 2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)} \quad 2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c} \\
& -\frac{3 c^{2} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b e}{2\left(a e^{2}-b d e+c d^{2}\right) a \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{c^{3} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{\left(a e^{2}-b d e+c d^{2}\right) a \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}} \\
& +\frac{c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b^{3} e}{2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{c^{2} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b^{2} d}{2\left(a e^{2}-b d e+c d^{2}\right) a^{2} \sqrt{-4 a c+b^{2} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{1}{3 a d x^{3}}} \\
& \frac{e^{4} \arctan \left(\frac{e x}{\sqrt{d e}}\right)}{\left.a e^{2}-b d e+c d^{2}\right) \sqrt{d e}}
\end{aligned}
$$

$$
\int \frac{x^{3} \sqrt{c x^{4}+b x^{2}+a}}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 184 leaves, 7 steps):
$\frac{\left(8 c^{2} d^{2}-b^{2} e^{2}-4 c e(-a e+b d)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{2 \sqrt{c} \sqrt{c x^{4}+b x^{2}+a}}\right)}{16 c^{3} / 2 e^{3}}-\frac{d \operatorname{arctanh}\left(\frac{b d-2 a e+(-b e+2 c d) x^{2}}{2 \sqrt{a e^{2}-b d e+c d^{2}} \sqrt{c x^{4}+b x^{2}+a}}\right) \sqrt{a e^{2}-b d e+c d^{2}}}{2 e^{3}}$

$$
-\frac{\left(-2 c e x^{2}-b e+4 c d\right) \sqrt{c x^{4}+b x^{2}+a}}{8 c e^{2}}
$$

Result(type 3, 886 leaves):

$$
\begin{aligned}
& \frac{\sqrt{c x^{4}+b x^{2}+a} x^{2}}{4 e}+\frac{\sqrt{c x^{4}+b x^{2}+a} b}{8 e c}+\frac{\ln \left(\frac{\frac{b}{2}+c x^{2}}{\sqrt{c}}+\sqrt{c x^{4}+b x^{2}+a}\right) a}{4 e \sqrt{c}}-\frac{\ln \left(\frac{\frac{b}{2}+c x^{2}}{\sqrt{c}}+\sqrt{c x^{4}+b x^{2}+a}\right) b^{2}}{16 e c^{3 / 2}} \\
& -\frac{d \sqrt{\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}}{2 e^{2}} \\
& -\frac{d \ln \left(\frac{\frac{b e-2 c d}{2 e}+c\left(x^{2}+\frac{d}{e}\right)}{\sqrt{c}}+\sqrt{\left.\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}\right) b}\right.}{4 e^{2} \sqrt{c}} \\
& +\frac{d^{2} \ln \left(\frac{\frac{b e-2 c d}{2 e}+c\left(x^{2}+\frac{d}{e}\right)}{\sqrt{c}}+\sqrt{\left.\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}\right) \sqrt{c}}\right.}{2 e^{3}} \\
& +\frac{1}{2 e^{2} \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}}\left(d \operatorname { l n } \left(\frac { 1 } { x ^ { 2 } + \frac { d } { e } } \left(\frac{2\left(a e^{2}-b d e+c d^{2}\right)}{e^{2}}+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}\right.\right.\right. \\
& \left.+2 \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}} \sqrt{\left.\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}\right)} a\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2 e^{3} \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}}\left(d ^ { 2 } \operatorname { l n } \left(\frac { 1 } { x ^ { 2 } + \frac { d } { e } } \left(\frac{2\left(a e^{2}-b d e+c d^{2}\right)}{e^{2}}+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}\right.\right.\right. \\
& +2 \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}} \sqrt{\left.\left.\left.\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}\right)\right) b\right)} \\
& +\frac{1}{2 e^{4} \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}}\left(d ^ { 3 } \operatorname { l n } \left(\frac { 1 } { x ^ { 2 } + \frac { d } { e } } \left(\frac{2\left(a e^{2}-b d e+c d^{2}\right)}{e^{2}}+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}\right.\right.\right. \\
& \left.\left.\left.+2 \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}} \sqrt{\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}\right)\right) c\right)
\end{aligned}
$$

Problem 92: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{5}}{\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 156 leaves, 5 steps):

$$
\frac{d^{2} \operatorname{arctanh}\left(\frac{b d-2 a e+(-b e+2 c d) x^{2}}{2 \sqrt{a e^{2}-b d e+c d^{2}} \sqrt{c x^{4}+b x^{2}+a}}\right)}{2\left(a e^{2}-b d e+c d^{2}\right)^{3 / 2}}+\frac{-a(-2 a e+b d)-\left(-a b e-2 a d c+b^{2} d\right) x^{2}}{\left(-4 a c+b^{2}\right)\left(a e^{2}-b d e+c d^{2}\right) \sqrt{c x^{4}+b x^{2}+a}}
$$

Result(type 3, 612 leaves):

$$
\begin{aligned}
& -\frac{b x^{2}}{e \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}-\frac{2 a}{e \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}-\frac{2 d x^{2} c}{e^{2} \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}-\frac{d b}{e^{2} \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)} \\
& -\frac{2 d^{2} c \sqrt{\left(x^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c+\sqrt{-4 a c+b^{2}}\left(x^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{e^{2}\left(-4 a c+b^{2}\right)\left(e \sqrt{-4 a c+b^{2}}-b e+2 c d\right)\left(x^{2}+\frac{b}{2 c}-\frac{\sqrt{-4 a c+b^{2}}}{2 c}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 d^{2} c \sqrt{\left(x^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c-\sqrt{-4 a c+b^{2}}\left(x^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{e^{2}\left(-4 a c+b^{2}\right)\left(e \sqrt{-4 a c+b^{2}}+b e-2 c d\right)\left(x^{2}+\frac{b}{2 c}+\frac{\sqrt{-4 a c+b^{2}}}{2 c}\right)} \\
& +\left(2 d ^ { 2 } c \operatorname { l n } \left(\frac{2\left(a e^{2}-b d e+c d^{2}\right)}{e^{2}}+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+2 \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}} \sqrt{\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}}+\frac{a e^{2}-b d e+c d^{2}}{e}\right.\right. \\
& \left.-2 c d) \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}\right) \\
& \left(\sqrt{\frac{e^{2}}{e}}\right. \\
&
\end{aligned}
$$

Problem 93: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 154 leaves, 5 steps):

$$
\frac{e^{2} \operatorname{arctanh}\left(\frac{b d-2 a e+(-b e+2 c d) x^{2}}{2 \sqrt{a e^{2}-b d e+c d^{2}} \sqrt{c x^{4}+b x^{2}+a}}\right)}{2\left(a e^{2}-b d e+c d^{2}\right)^{3 / 2}}+\frac{-b c d+b^{2} e-2 a c e-c(-b e+2 c d) x^{2}}{\left(-4 a c+b^{2}\right)\left(a e^{2}-b d e+c d^{2}\right) \sqrt{c x^{4}+b x^{2}+a}}
$$

Result(type 3, 453 leaves):

$$
\begin{aligned}
& \text { (} \frac{2 c \sqrt{\left(x^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c+\sqrt{-4 a c+b^{2}}\left(x^{2}-\frac{\left.-b+\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)}}{} \begin{array}{l}
\left(-4 a c+b^{2}\right)\left(e \sqrt{-4 a c+b^{2}}-b e+2 c d\right)\left(x^{2}-\frac{\left.-b+\sqrt{-4 a c+b^{2}}\right)}{2 c}\right) \\
\\
+\frac{2 c \sqrt{\left(x^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c-\sqrt{-4 a c+b^{2}}\left(x^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{\left(-4 a c+b^{2}\right)\left(e \sqrt{-4 a c+b^{2}}+b e-2 c d\right)\left(x^{2}+\frac{\left.b+\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)} \\
\quad+\left(2 c e \operatorname { l n } \left(\frac{2\left(a e^{2}-b d e+c d^{2}\right)}{e^{2}}+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+2 \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}} x^{\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{d}{e}}\right.\right.
\end{array}
\end{aligned}
$$

Problem 94: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{3}\left(e x^{2}+d\right)\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 379 leaves, 15 steps):

$$
\begin{aligned}
& \frac{3 b \operatorname{arctanh}\left(\frac{b x^{2}+2 a}{2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}\right)}{4 a^{5 / 2 d}}+\frac{e \operatorname{arctanh}\left(\frac{b x^{2}+2 a}{2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}\right)}{2 a^{3 / 2 d^{2}}}+\frac{e^{4} \operatorname{arctanh}\left(\frac{b d-2 a e+(-b e+2 c d) x^{2}}{2 \sqrt{a e^{2}-b d e+c d^{2}} \sqrt{c x^{4}+b x^{2}+a}}\right)}{2 d^{2}\left(a e^{2}-b d e+c d^{2}\right)^{3 / 2}} \\
& \quad-\frac{e\left(c x^{2} b-2 a c+b^{2}\right)}{a\left(-4 a c+b^{2}\right) d^{2} \sqrt{c x^{4}+b x^{2}+a}}+\frac{c x^{2} b-2 a c+b^{2}}{a\left(-4 a c+b^{2}\right) d x^{2} \sqrt{c x^{4}+b x^{2}+a}}-\frac{e^{2}\left(b c d-b^{2} e+2 a c e+c(-b e+2 c d) x^{2}\right)}{\left(-4 a c+b^{2}\right) d^{2}\left(a e^{2}-b d e+c d^{2}\right) \sqrt{c x^{4}+b x^{2}+a}} \\
& \quad-\frac{\left(-8 a c+3 b^{2}\right) \sqrt{c x^{4}+b x^{2}+a}}{2 a^{2}\left(-4 a c+b^{2}\right) d x^{2}}
\end{aligned}
$$

Result(type 3, 862 leaves):
$-\frac{1}{2 d a x^{2} \sqrt{c x^{4}+b x^{2}+a}}-\frac{3 b}{4 d a^{2} \sqrt{c x^{4}+b x^{2}+a}}+\frac{3 b^{2} c x^{2}}{2 d a^{2} \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}+\frac{3 b^{3}}{4 d a^{2} \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}$

$$
+\frac{3 b \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right)}{4 d a^{5 / 2}}-\frac{4 c^{2} x^{2}}{d a \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}-\frac{2 c b}{d a \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}
$$

$$
-\frac{2 e^{2} c \sqrt{\left(x^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c+\sqrt{-4 a c+b^{2}}\left(x^{2}-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{d^{2}\left(-4 a c+b^{2}\right)\left(e \sqrt{-4 a c+b^{2}}-b e+2 c d\right)\left(x^{2}+\frac{b}{2 c}-\frac{\sqrt{-4 a c+b^{2}}}{2 c}\right)}
$$

$$
+\frac{2 e^{2} c \sqrt{\left(x^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)^{2} c-\sqrt{-4 a c+b^{2}}\left(x^{2}+\frac{b+\sqrt{-4 a c+b^{2}}}{2 c}\right)}}{d^{2}\left(-4 a c+b^{2}\right)\left(e \sqrt{-4 a c+b^{2}}+b e-2 c d\right)\left(x^{2}+\frac{b}{2 c}+\frac{\sqrt{-4 a c+b^{2}}}{2 c}\right)}
$$

$$
\begin{aligned}
& +\left(2 e ^ { 3 } c \operatorname { l n } \left(\frac{\frac{2\left(a e^{2}-b d e+c d^{2}\right)}{e^{2}}+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+2 \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}} \sqrt{x^{2}+\frac{d}{e}} \sqrt{\left(x^{2}+\frac{d}{e}\right)^{2} c+\frac{(b e-2 c d)\left(x^{2}+\frac{d}{e}\right)}{e}+\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}}{\left.-2 c d) \sqrt{\frac{a e^{2}-b d e+c d^{2}}{e^{2}}}\right)-\frac{e}{2 d^{2} a \sqrt{c x^{4}+b x^{2}+a}}+\frac{e b x^{2} c}{d^{2} a \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}+\frac{e b^{2}}{2 d^{2} a \sqrt{c x^{4}+b x^{2}+a}\left(4 a c-b^{2}\right)}}\right.\right. \\
& +\frac{e \ln \left(\frac{2 a+b x^{2}+2 \sqrt{a} \sqrt{c x^{4}+b x^{2}+a}}{x^{2}}\right.}{2 d^{2} a^{3 / 2}}
\end{aligned}
$$

Problem 97: Result is not expressed in closed-form.

$$
\int \frac{x^{7} \sqrt{e x^{2}+d}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 355 leaves, 7 steps):

$$
-\frac{(b e+c d)\left(e x^{2}+d\right)^{3 / 2}}{3 c^{2} e^{2}}+\frac{\left(e x^{2}+d\right)^{5 / 2}}{5 c e^{2}}+\frac{\left(-a c+b^{2}\right) \sqrt{e x^{2}+d}}{c^{3}}
$$

$$
2 c^{7 / 2} \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}
$$

$$
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{2} \sqrt{c} \sqrt{e x^{2}+d}}{\sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}\right)\left(b^{2} c d-a c^{2} d-b^{3} e+2 a b c e+\frac{-2 a^{2} e c^{2}+4 a b^{2} c e-3 a b d c^{2}-b^{4} e+b^{3} c d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{\sqrt{-4}}
$$

$$
2 c^{7 / 2} \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}
$$

Result(type 7, 495 leaves):

$$
\begin{aligned}
& \frac{x^{2}\left(e x^{2}+d\right)^{3 / 2}}{5 c e}-\frac{2 d\left(e x^{2}+d\right)^{3 / 2}}{15 c e^{2}}-\frac{b\left(e x^{2}+d\right)^{3 / 2}}{3 c^{2} e}+\frac{\sqrt{e} x a}{2 c^{2}}-\frac{\sqrt{e} x b^{2}}{2 c^{3}}-\frac{\sqrt{e x^{2}+d} a}{2 c^{2}}+\frac{\sqrt{e x^{2}+d} b^{2}}{2 c^{3}}-\frac{d a}{2 c^{2}\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)} \\
& \quad+\frac{d b^{2}}{2 c^{3}\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)}-\frac{1}{4 c^{3}}\left(\sum _ { - R = R o o t O f (c _ Z ^ { 8 } + (4 b e - 4 c d) Z ^ { 6 } + (1 6 a e ^ { 2 } - 8 b d e + 6 c d ^ { 2 }) Z ^ { 4 } + (4 b d ^ { 2 } e - 4 c d ^ { 3 }) Z ^ { 2 } + c d ^ { 4 }) } \left(\left(\left(-2 a b c e+a c^{2} d\right.\right.\right.\right. \\
& \left.+b^{3} e-b^{2} c d\right) _R^{6}+\left(-4 a^{2} c e^{2}+4 a b^{2} e^{2}+2 a b c d e-3 a c^{2} d^{2}-3 b^{3} d e+3 b^{2} c d^{2}\right) R^{4}+d\left(4 a^{2} c e^{2}-4 a b^{2} e^{2}-2 a b c d e+3 a c^{2} d^{2}+3 b^{3} d e\right. \\
& \left.\left.\left.-3 b^{2} c d^{2}\right) _R^{2}+2 a b c d^{3} e-a c^{2} d^{4}-b^{3} d^{3} e+b^{2} c d^{4}\right) \ln \left(\sqrt{e x^{2}+d}-\sqrt{e} x--_{-}\right)\right) /\left(R^{7} c+3 _R^{5} b e-3 _R^{5} c d+8 _R^{3} a e^{2}-4 _R^{3} b d e\right.
\end{aligned}
$$

$$
\left.\left.+3 R^{3} c d^{2}+{ }_{-} R b d^{2} e-_{-} R c d^{3}\right)\right)
$$

Problem 98: Result is not expressed in closed-form.

$$
\int \frac{\sqrt{e x^{2}+d}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 200 leaves, 11 steps):

$$
\begin{aligned}
& \arctan \left(\frac{x \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)} \\
& \arctan \left(\frac{x \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)} \\
& \sqrt{-4 a c+b^{2}} \sqrt{b+\sqrt{-4 a c+b^{2}}}
\end{aligned}
$$

Result(type 7, 160 leaves):
$-\frac{1}{2}\left(e^{3 / 2}\right)$

$$
\begin{gathered}
\sum_{-} R=R o o t O f\left(c Z_{-} Z^{4}+(4 b e-4 c d) Z^{3}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{2}+\left(4 b d^{2} e-4 c d^{3}\right) __{-} Z+c d^{4}\right) \\
\left.\left.\frac{\left(R^{2}+2 _R d+d^{2}\right) \ln \left(\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}-{ }_{-} R\right)}{R^{3} c+3 _R^{2} b e-3 _R^{2} c d+8 _R a e^{2}-4 _R b d e+3 _R c d^{2}+b d^{2} e-c d^{3}}\right)\right)
\end{gathered}
$$

Problem 99: Result is not expressed in closed-form.

$$
\int \frac{\sqrt{e x^{2}+d}}{x^{2}\left(c x^{4}+b x^{2}+a\right)} d x
$$

Optimal(type 3, 249 leaves, 8 steps):
$-\frac{\sqrt{e x^{2}+d}}{a x}-\frac{c \arctan \left(\frac{x \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right)}{a \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)} \sqrt{b-\sqrt{-4 a c+b^{2}}}}-\frac{c \arctan \left(\frac{x \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{\left.\sqrt{e x^{2}+d} \sqrt{b+\sqrt{-4 a c+b^{2}}}\right)}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right)}{a \sqrt{\left.b+\sqrt{-4 a c+b^{2}} \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right.}\right)}}$
Result(type 7, 271 leaves):

$$
\begin{aligned}
& -\frac{\left(e x^{2}+d\right)^{3 / 2}}{a d x}+\frac{e x \sqrt{e x^{2}+d}}{a d}+\frac{\sqrt{e} \ln \left(\sqrt{e} x+\sqrt{e x^{2}+d}\right)}{a}+\frac{1}{2 a}(\sqrt{e}(\\
& \quad \sum_{-}=R_{\text {ootOf }}\left(c_{-} Z^{4}+(4 b e-4 c d) Z^{3}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{2}+\left(4 b d^{2} e-4 c d^{3}\right)-Z+c d^{4}\right) \\
& \left.\left.\frac{\left(R^{2} c d+2\left(-2 a e^{2}+2 b d e-c d^{2}\right) _R+c d^{3}\right) \ln \left(\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}-__{-} R\right)}{R^{3} c+3 _R^{2} b e-3 _R^{2} c d+8 _R a e^{2}-4 _R b d e+3 _R c d^{2}+b d^{2} e-c d^{3}}\right)\right)+\frac{\sqrt{e} \ln \left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)}{a}
\end{aligned}
$$

Problem 100: Result is not expressed in closed-form.

$$
\int \frac{\left(e x^{2}+d\right)^{3 / 2}}{x\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 292 leaves, 8 steps):

$$
\begin{gathered}
-\frac{d^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d}}\right)}{a}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{2} \sqrt{c} \sqrt{e x^{2}+d}}{\sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}\right)\left(-b\left(a e^{2}+c d^{2}\right)+a e^{2} \sqrt{-4 a c+b^{2}}-c d\left(-4 a e+d \sqrt{-4 a c+b^{2}}\right)\right) \sqrt{2}}{2 a \sqrt{c} \sqrt{-4 a c+b^{2}} \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}} \\
\quad-\frac{\operatorname{arctanh}\left(\frac{\sqrt{2} \sqrt{c} \sqrt{e x^{2}+d}}{\sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}\right)\left(b\left(a e^{2}+c d^{2}\right)+a e^{2} \sqrt{-4 a c+b^{2}}-c d\left(4 a e+d \sqrt{-4 a c+b^{2}}\right)\right) \sqrt{2}}{2 a \sqrt{c} \sqrt{-4 a c+b^{2}} \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}
\end{gathered}
$$

Result(type 7, 387 leaves):

$$
\frac{7\left(e x^{2}+d\right)^{3 / 2}}{24 a}-\frac{d^{3 / 2} \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{e x^{2}+d}}{x}\right)}{a}+\frac{3 \sqrt{e x^{2}+d} d}{8 a}+\frac{e^{3 / 2} x^{3}}{6 a}-\frac{e \sqrt{e x^{2}+d} x^{2}}{8 a}+\frac{3 \sqrt{e x d}}{4 a}-\frac{1}{4 a}(
$$

$$
\sum_{2}
$$

$$
\begin{aligned}
& -R=\operatorname{RootOf}\left(c Z^{8}+(4 b e-4 c d) Z^{6}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{4}+\left(4 b d^{2} e-4 c d^{3}\right) Z^{2}+c d^{4}\right) \\
& \left.\frac{\left(\left(-a e^{2}+c d^{2}\right) R^{6}+d\left(-5 a e^{2}+4 b d e-3 c d^{2}\right) R^{4}+d^{2}\left(5 a e^{2}-4 b d e+3 c d^{2}\right)_{-} R^{2}+a d^{3} e^{2}-c d^{5}\right) \ln \left(\sqrt{e x^{2}+d}-\sqrt{e} x-R\right)}{R^{7} c+3 R^{5} b e-3 _R^{5} c d+8 R^{3} a e^{2}-4 R_{-}^{3} b d e+3_{-} R^{3} c d^{2}+__{-} R b d^{2} e-{ }_{-} R c d^{3}}\right) \\
& -\frac{5 d^{2}}{8 a\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)}-\frac{d^{3}}{24 a\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{3}}
\end{aligned}
$$

[^3]$$
\int \frac{\left(e x^{2}+d\right)^{3 / 2}}{x^{4}\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 445 leaves, 19 steps):

Result(type 7, 510 leaves):

$$
\begin{aligned}
& -\frac{\left(e x^{2}+d\right)^{5 / 2}}{3 a d x^{3}}-\frac{2 e\left(e x^{2}+d\right)^{5 / 2}}{3 a d^{2} x}+\frac{2 e^{2} x\left(e x^{2}+d\right)^{3 / 2}}{3 a d^{2}}+\frac{e^{2} x \sqrt{e x^{2}+d}}{a d}+\frac{e^{3 / 2} \ln \left(\sqrt{e} x+\sqrt{e x^{2}+d}\right)}{a}-\frac{e^{3 / 2} x^{2} b}{4 a^{2}}-\frac{5 e \sqrt{e x^{2}+d} x b}{4 a^{2}}-\frac{\sqrt{e} b d}{8 a^{2}} \\
& \quad+\frac{1}{2 a^{2}}(\sqrt{e}(
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{-} \\
& \left.\qquad \begin{array}{l}
\text { RootOf }\left(c Z^{4}+(4 b e-4 c d) Z^{3}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{2}+\left(4 b d^{2} e-4 c d^{3}\right) _Z+c d^{4}\right) \\
\left(c d(2 a e-b d) _R^{2}+2\left(-2 a^{2} e^{3}+4 a d e^{2} b-2 d^{2} e b^{2}+b c d^{3}\right) _R+2 a c d^{3} e-b c d^{4}\right) \ln \left(\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}-_R\right) \\
R^{3} c+3 _R^{2} b e-3 _R^{2} c d+8 _R a e^{2}-4 _R b d e+3 _R c d^{2}+b d^{2} e-c d^{3}
\end{array}\right)
\end{aligned}
$$

$$
+\frac{e^{3 / 2} \ln \left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)}{a}-\frac{3 \sqrt{e} \ln \left(\sqrt{e x^{2}+d}-\sqrt{e} x\right) b d}{2 a^{2}}+\frac{\sqrt{e} b d^{2}}{8 a^{2}\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}}+\frac{b\left(e x^{2}+d\right)^{5 / 2}}{a^{2} d x}-\frac{b e x\left(e x^{2}+d\right)^{3 / 2}}{a^{2} d}
$$

$$
-\frac{3 b \sqrt{e} d \ln \left(\sqrt{e} x+\sqrt{e x^{2}+d}\right)}{2 a^{2}}
$$

$$
\begin{aligned}
& -\frac{\left(e x^{2}+d\right)^{3 / 2}}{3 a x^{3}}-\frac{(-a e+b d) \operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{e x^{2}+d}}\right) \sqrt{e}}{a^{2}}+\frac{\operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{e x^{2}+d}}\right)\left(b d-a e+\frac{a b e+2 a d c-b^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{e}}{2 a^{2}} \\
& +\frac{\operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{e x^{2}+d}}\right)\left(b d-a e+\frac{-a b e-2 a d c+b^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{e}}{2 a^{2}}+\frac{(-a e+b d) \sqrt{e x^{2}+d}}{x a^{2}} \\
& +\frac{\arctan \left(\frac{x \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b d-a e+\frac{-a b e-2 a d c+b^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{} \\
& 2 a^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}} \\
& +\frac{\arctan \left(\frac{x \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b d-a e+\frac{a b e+2 a d c-b^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{2 a^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Problem 102: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{-x^{2}+1}}{x^{3}\left(c x^{4}+b x^{2}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 240 leaves, 8 steps):
$\frac{(a+2 b) \operatorname{arctanh}\left(\sqrt{-x^{2}+1}\right)}{2 a^{2}}-\frac{1}{4 a\left(1-\sqrt{-x^{2}+1}\right)}+\frac{1}{4 a\left(1+\sqrt{-x^{2}+1}\right)}$
$-\frac{\operatorname{arctanh}\left(\frac{\sqrt{2} \sqrt{c} \sqrt{-x^{2}+1}}{\sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(a+b+\frac{b^{2}+a(b-2 c)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 a^{2} \sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}$
$-\frac{\operatorname{arctanh}\left(\frac{\sqrt{2} \sqrt{c} \sqrt{-x^{2}+1}}{\sqrt{b+2 c+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(a+b+\frac{-b^{2}-a(b-2 c)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 a^{2} \sqrt{b+2 c+\sqrt{-4 a c+b^{2}}}}$
Result(type ?, 2769 leaves): Display of huge result suppressed!
Problem 103: Result is not expressed in closed-form.

$$
\int \frac{x^{2} \sqrt{-x^{2}+1}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 225 leaves, 8 steps):
$-\frac{\arcsin (x)}{c}+\frac{\arctan \left(\frac{x \sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}{\sqrt{-x^{2}+1} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b+c+\frac{2 a c-b^{2}-b c}{\sqrt{-4 a c+b^{2}}}\right)}{c \sqrt{b-\sqrt{-4 a c+b^{2}}} \sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}$

Result(type 7, 174 leaves):

$-\frac{1}{4 c}($
$\sum_{R=\text { Rooiof }\left(a _Z^{8}+(4 a+4 b) _^{6}+(6 a+8 b+16 c) _^{4}+(4 a+4 b) _^{2}+a\right)} \frac{\left(R^{6} a+(4 c+3 a+4 b) R^{4}+(4 c+3 a+4 b) _R^{2}+a\right) \ln \left(\frac{\sqrt{-x^{2}+1}-1}{x}-{ }_{-} R\right)}{\left.-^{R^{7} a+3 _^{5} a+3 _^{5} b+3 _R^{3} a+4 _^{3} b+8 R^{3} c+_^{R a+} R b}\right)}$

Problem 104: Result is not expressed in closed-form.

$$
\int \frac{\sqrt{-x^{2}+1}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 180 leaves, 9 steps):

$$
\frac{\arctan \left(\frac{x \sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}{\sqrt{-x^{2}+1} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}{\sqrt{-4 a c+b^{2}} \sqrt{b-\sqrt{-4 a c+b^{2}}}}-\frac{\arctan \left(\frac{x \sqrt{b+2 c+\sqrt{-4 a c+b^{2}}}}{\sqrt{-x^{2}+1} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{b+2 c+\sqrt{-4 a c+b^{2}}}}{\sqrt{-4 a c+b^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 7, 129 leaves):

Problem 105: Result is not expressed in closed-form.

$$
\int \frac{x^{4}}{\left(c x^{4}+b x^{2}+a\right) \sqrt{e x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 253 leaves, 10 steps):
$\frac{\operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{e x^{2}+d}}\right)}{c \sqrt{e}}-\frac{\arctan \left(\frac{x \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right.}{c \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)} \sqrt{b-\sqrt{-4 a c+b^{2}}}}$

$$
-\frac{\arctan \left(\frac{x \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{c \sqrt{b+\sqrt{-4 a c+b^{2}}} \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}
$$

Result (type 7, 199 leaves):
$\frac{\ln \left(\sqrt{e} x+\sqrt{e x^{2}+d}\right)}{c \sqrt{e}}+\frac{1}{2 c}(\sqrt{e}($

$$
\begin{aligned}
& \sum \\
& -R=\operatorname{RootOf}\left(c _Z^{4}+(4 b e-4 c d) Z^{3}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{2}+\left(4 b d^{2} e-4 c d^{3}\right) _Z+c d^{4}\right) \\
& \left.\left.\frac{\left(b _R^{2}+2(2 a e-b d) _R+b d^{2}\right) \ln \left(\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}-{ }_{2} R\right)}{R^{3} c+3 _R^{2} b e-3 _R^{2} c d+8 _R a e^{2}-4 _R b d e+3 _R c d^{2}+b d^{2} e-c d^{3}}\right)\right)
\end{aligned}
$$

Problem 106: Result is not expressed in closed-form.

Optimal(type 3, 203 leaves, 5 steps):

$$
\frac{2 c \arctan \left(\frac{x \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)}{\sqrt{-4 a c+b^{2}} \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)} \sqrt{b-\sqrt{-4 a c+b^{2}}}}-\frac{2 c \arctan \left(\frac{x \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)}{\sqrt{-4 a c+b^{2}} \sqrt{b+\sqrt{-4 a c+b^{2}} \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}}
$$

Result(type 7, 150 leaves):
$-2 e^{3 / 2}$

$$
\begin{gathered}
\sum_{-}{ }^{R=R o o t O f\left(c Z_{-} Z^{4}+(4 b e-4 c d) Z^{3}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{2}+\left(4 b d^{2} e-4 c d^{3}\right) _Z+c d^{4}\right)} \\
\left.\frac{Z_{-} R \ln \left(\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}-{ }_{-} R\right)}{R^{3} c+3 _R^{2} b e-3 _R^{2} c d+8 _R a e^{2}-4 _R b d e+3 _R c d^{2}+b d^{2} e-c d^{3}}\right)
\end{gathered}
$$

$$
\int \frac{1}{x^{4}\left(c x^{4}+b x^{2}+a\right) \sqrt{e x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 292 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{\sqrt{e x^{2}+d}}{3 a d x^{3}}+\frac{b \sqrt{e x^{2}+d}}{a^{2} d x}+\frac{2 e \sqrt{e x^{2}+d}}{3 a d^{2} x}+\frac{c \arctan \left(\frac{x \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}}{\sqrt{e x^{2}+d} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{a^{2} \sqrt{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& \quad+\operatorname{c\operatorname {arctan}(\frac {x\sqrt {2cd-e(b+\sqrt {-4ac+b^{2}})}}{\sqrt {ex^{2}+d}\sqrt {b+\sqrt {-4ac+b^{2}}}})(b+\frac {2ac-b^{2}}{\sqrt {-4ac+b^{2}}})} \\
& \quad+\frac{a^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}} \sqrt{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}{}
\end{aligned}
$$

Result(type 7, 247 leaves):

$$
\begin{aligned}
& -\frac{\sqrt{e x^{2}+d}}{3 a d x^{3}}+\frac{2 e \sqrt{e x^{2}+d}}{3 a d^{2} x}-\frac{1}{2 a^{2}}(\sqrt{e}(\\
& \quad \sum_{-R=R o o t O f\left(c _Z^{4}+(4 b e-4 c d) Z^{3}+\left(16 a e^{2}-8 b d e+6 c d^{2}\right) Z^{2}+\left(4 b d^{2} e-4 c d^{3}\right) _Z+c d^{4}\right)} \\
& \left.\left.\frac{\left(c_{-} R^{2} b+2\left(-2 a c e+2 b^{2} e-b c d\right) R_{-} R+b c d^{2}\right) \ln \left(\left(\sqrt{e x^{2}+d}-\sqrt{e} x\right)^{2}-{ }_{-} R\right)}{R^{3} c+3 _R^{2} b e-3 _R^{2} c d+8 _R a e^{2}-4 _R b d e+3 _R c d^{2}+b d^{2} e-c d^{3}}\right)\right)+\frac{b \sqrt{e x^{2}+d}}{a^{2} d x}
\end{aligned}
$$

Problem 108: Unable to integrate problem.

$$
\int \frac{x^{3}\left(e x^{2}+d\right)^{q}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 5, 198 leaves, 5 steps):

$$
\begin{gathered}
-\frac{\left(e x^{2}+d\right)^{1+q} \text { hypergeom }\left([1,1+q],[2+q], \frac{2 c\left(e x^{2}+d\right)}{2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)}\right)\left(1-\frac{b}{\sqrt{-4 a c+b^{2}}}\right)}{2(1+q)\left(2 c d-e\left(b-\sqrt{-4 a c+b^{2}}\right)\right)} \\
-\frac{\left(e x^{2}+d\right)^{1+q} \text { hypergeom }\left([1,1+q],[2+q], \frac{2 c\left(e x^{2}+d\right)}{2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}\right)\left(1+\frac{b}{\sqrt{-4 a c+b^{2}}}\right)}{2(1+q)\left(2 c d-e\left(b+\sqrt{-4 a c+b^{2}}\right)\right)}
\end{gathered}
$$

Result(type 8, 29 leaves):

$$
\int \frac{x^{3}\left(e x^{2}+d\right)^{q}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Problem 109: Unable to integrate problem.

$$
\int \frac{x^{6}\left(e x^{2}+d\right)^{q}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 6, 313 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{b x\left(e x^{2}+d\right)^{q} \text { hypergeom }\left(\left[\frac{1}{2},-q\right],\left[\frac{3}{2}\right],-\frac{e x^{2}}{d}\right)}{c^{2}\left(1+\frac{e x^{2}}{d}\right)^{q}}+\frac{x^{3}\left(e x^{2}+d\right)^{q} \text { hypergeom }\left(\left[\frac{3}{2},-q\right],\left[\frac{5}{2}\right],-\frac{e x^{2}}{d}\right)}{3 c\left(1+\frac{e x^{2}}{d}\right)^{q}} \\
& +\frac{x\left(e x^{2}+d\right)^{q} \text { AppellF1 }\left(\frac{1}{2},-q, 1, \frac{3}{2},-\frac{e x^{2}}{d},-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}\right)\left(b^{2}-a c-\frac{b\left(-3 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right)}{c^{2}\left(1+\frac{e x^{2}}{d}\right)^{q}\left(b-\sqrt{-4 a c+b^{2}}\right)} \\
& +\frac{x\left(e x^{2}+d\right)^{q} \text { AppellF1 }\left(\frac{1}{2},-q, 1, \frac{3}{2},-\frac{e x^{2}}{d},-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right)\left(b^{2}-a c+\frac{b\left(-3 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right)}{c^{2}\left(1+\frac{e x^{2}}{d}\right)^{q}\left(b+\sqrt{-4 a c+b^{2}}\right)}
\end{aligned}
$$

Result(type 8, 29 leaves):

$$
\int \frac{x^{6}\left(e x^{2}+d\right)^{q}}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Test results for the 30 problems in "1.2.2.5 $P(x)\left(a+b x^{\wedge} 2+c x^{\wedge} 4\right)^{\wedge} p . t x t "$
Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{h x^{4}+g x^{3}+f x^{2}+e x+d}{x^{4}+x^{2}+1} \mathrm{~d} x
$$

Optimal(type 3, 115 leaves, 17 steps):

$$
\begin{aligned}
h x- & \frac{(d-f) \ln \left(x^{2}-x+1\right)}{4}+\frac{(d-f) \ln \left(x^{2}+x+1\right)}{4}+\frac{g \ln \left(x^{4}+x^{2}+1\right)}{4}-\frac{(d+f-2 h) \arctan \left(\frac{(1-2 x) \sqrt{3}}{3}\right) \sqrt{3}}{6} \\
& +\frac{(d+f-2 h) \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) \sqrt{3}}{6}+\frac{(2 e-g) \arctan \left(\frac{\left(2 x^{2}+1\right) \sqrt{3}}{3}\right) \sqrt{3}}{6}
\end{aligned}
$$

Result(type 3, 240 leaves):
$h x+\frac{d \ln \left(x^{2}+x+1\right)}{4}-\frac{\ln \left(x^{2}+x+1\right) f}{4}+\frac{\ln \left(x^{2}+x+1\right) g}{4}+\frac{d \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) \sqrt{3}}{6}-\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) e}{3}$
$+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) f}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) g}{6}-\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) h}{3}+\frac{\ln \left(x^{2}-x+1\right) f}{4}-\frac{d \ln \left(x^{2}-x+1\right)}{4}$
$+\frac{\ln \left(x^{2}-x+1\right) g}{4}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) d}{6}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) e}{3}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) f}{6}$
$-\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) g}{6}-\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) h}{3}$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{i x^{5}+h x^{4}+g x^{3}+f x^{2}+e x+d}{x^{4}+x^{2}+1} \mathrm{~d} x
$$

Optimal(type 3, 128 leaves, 19 steps):

$$
\begin{aligned}
h x+ & \frac{i x^{2}}{2}-\frac{(d-f) \ln \left(x^{2}-x+1\right)}{4}+\frac{(d-f) \ln \left(x^{2}+x+1\right)}{4}+\frac{(g-i) \ln \left(x^{4}+x^{2}+1\right)}{4}-\frac{(d+f-2 h) \arctan \left(\frac{(1-2 x) \sqrt{3}}{3}\right) \sqrt{3}}{6} \\
& +\frac{(d+f-2 h) \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) \sqrt{3}}{6}+\frac{(2 e-g-i) \arctan \left(\frac{\left(2 x^{2}+1\right) \sqrt{3}}{3}\right) \sqrt{3}}{6}
\end{aligned}
$$

Result(type 3, 302 leaves):

$$
\begin{aligned}
& \frac{i x^{2}}{2}+h x+\frac{d \ln \left(x^{2}+x+1\right)}{4}-\frac{\ln \left(x^{2}+x+1\right) f}{4}+\frac{\ln \left(x^{2}+x+1\right) g}{4}-\frac{\ln \left(x^{2}+x+1\right) i}{4}+\frac{d \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) \sqrt{3}}{6} \\
&-\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) e}{3}+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) f\left(\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) g}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) h}{3}\right.}{} \begin{aligned}
& 3 \\
&+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) i}{6}+\frac{\ln \left(x^{2}-x+1\right) g}{4}-\frac{\ln \left(x^{2}-x+1\right) i}{4}+\frac{\ln \left(x^{2}-x+1\right) f}{4}-\frac{d \ln \left(x^{2}-x+1\right)}{4}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) d}{6} \\
&+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) e}{3}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) f}{6}-\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) g}{6}-\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) h}{3}
\end{aligned}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{h x^{4}+g x^{3}+f x^{2}+e x+d}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 247 leaves, 11 steps):

$$
\begin{aligned}
& \frac{h x}{c}+ \frac{g \ln \left(c x^{4}+b x^{2}+a\right)}{4 c}-\frac{(-b g+2 c e) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c \sqrt{-4 a c+b^{2}}}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(c f-b h+\frac{2 c^{2} d+b^{2} h-c(2 a h+b f)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 c^{3 / 2} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
&+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(c f-b h+\frac{2 a c h-b^{2} h+b c f-2 c^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 c^{3 / 2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type 3, 1131 leaves):
$\frac{h x}{c}-\frac{\left(-4 a c+b^{2}\right) \ln \left(-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b\right) g}{4\left(4 a c-b^{2}\right) c}+\frac{\sqrt{-4 a c+b^{2}} \ln \left(-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b\right) b g}{4\left(4 a c-b^{2}\right) c}$

$$
+\frac{\left(-4 a c+b^{2}\right) \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right)}{2\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}-\frac{\sqrt{-4 a c+b^{2}} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) a h}{\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}
$$

$$
+\frac{\sqrt{-4 a c+b^{2}} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{2} h}{2\left(4 a c-b^{2}\right) c \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}-\frac{\sqrt{-4 a c+b^{2}} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}\right)}\right) b f}{2\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}
$$

$+\frac{\sqrt{-4 a c+b^{2}} c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) d}{\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{\left(-4 a c+b^{2}\right) \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) g}{4\left(4 a c-b^{2}\right) c}$
$-\frac{\sqrt{-4 a c+b^{2}} \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) b g}{4\left(4 a c-b^{2}\right) c}+\frac{\sqrt{-4 a c+b^{2}} \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) e}{2\left(4 a c-b^{2}\right)}$
$+\frac{\left(-4 a c+b^{2}\right) \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b h}{2\left(4 a c-b^{2}\right) c \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}-\frac{\left(-4 a c+b^{2}\right) \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{2\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}$
$-\frac{\sqrt{-4 a c+b^{2}} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) a h \quad \sqrt{-4 a c+b^{2}} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{2} h}{}$

$$
\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)} c \quad 2\left(4 a c-b^{2}\right) c \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}
$$

$$
2\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c} \quad\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(x^{4}-5 x^{2}+4\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 136 leaves, 10 steps):

$$
\begin{aligned}
& \frac{5 e+8 g-(2 e+5 g) x^{2}}{18\left(x^{4}-5 x^{2}+4\right)}+\frac{x\left(17 d+20 f+32 h-(5 d+8 f+20 h) x^{2}\right)}{72\left(x^{4}-5 x^{2}+4\right)}+\frac{(19 d+52 f+112 h) \operatorname{arctanh}\left(\frac{x}{2}\right)}{432}-\frac{(d+7 f+13 h) \operatorname{arctanh}(x)}{54} \\
& \quad+\frac{(2 e+5 g) \ln \left(-x^{2}+1\right)}{54}-\frac{(2 e+5 g) \ln \left(-x^{2}+4\right)}{54}
\end{aligned}
$$

Result(type 3, 301 leaves):

$$
\begin{aligned}
& -\frac{19 \ln (x-2) d}{864}-\frac{\ln (x-2) e}{27}-\frac{\ln (2+x) e}{27}+\frac{19 \ln (2+x) d}{864}+\frac{\ln (x-1) d}{108}+\frac{\ln (x-1) e}{27}-\frac{\ln (x+1) d}{108}+\frac{\ln (x+1) e}{27}-\frac{7 \ln (x+1) f}{108} \\
& \quad-\frac{h}{36(x+1)}+\frac{g}{36(x+1)}-\frac{f}{36(x+1)}+\frac{e}{36(x+1)}-\frac{d}{36(x+1)}-\frac{13 \ln (x-2) f}{216}-\frac{5 \ln (x-2) g}{54}-\frac{7 \ln (x-2) h}{54}-\frac{d}{144(x-2)} \\
& \quad-\frac{e}{72(x-2)}-\frac{f}{36(x-2)}-\frac{g}{18(x-2)}-\frac{h}{9(x-2)}-\frac{d}{144(2+x)}+\frac{e}{72(2+x)}-\frac{f}{36(2+x)}+\frac{g}{18(2+x)}-\frac{h}{9(2+x)}+\frac{13 \ln (2+x) f}{216}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{5 \ln (2+x) g}{54}+\frac{7 \ln (2+x) h}{54}-\frac{d}{36(x-1)}-\frac{e}{36(x-1)}-\frac{f}{36(x-1)}-\frac{g}{36(x-1)}-\frac{h}{36(x-1)}+\frac{7 \ln (x-1) f}{108}+\frac{5 \ln (x-1) g}{54} \\
& +\frac{13 \ln (x-1) h}{108}-\frac{13 \ln (x+1) h}{108}+\frac{5 \ln (x+1) g}{54}
\end{aligned}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{i x^{5}+h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(x^{4}+x^{2}+1\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 171 leaves, 16 steps):
$\frac{x\left(d+f-2 h-(d-2 f+h) x^{2}\right)}{6\left(x^{4}+x^{2}+1\right)}+\frac{e-2 g+i+(2 e-g-i) x^{2}}{6\left(x^{4}+x^{2}+1\right)}-\frac{(2 d-f+h) \ln \left(x^{2}-x+1\right)}{8}+\frac{(2 d-f+h) \ln \left(x^{2}+x+1\right)}{8}$

$$
-\frac{(4 d+f+h) \arctan \left(\frac{(1-2 x) \sqrt{3}}{3}\right) \sqrt{3}}{36}+\frac{(4 d+f+h) \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) \sqrt{3}}{36}+\frac{(2 e-g+2 i) \arctan \left(\frac{\left(2 x^{2}+1\right) \sqrt{3}}{3}\right) \sqrt{3}}{9}
$$

Result(type 3, 373 leaves):

$$
\begin{aligned}
& \frac{\left(-\frac{d}{3}-\frac{h}{3}-\frac{e}{3}-\frac{g}{3}+\frac{2 f}{3}+\frac{2 i}{3}\right) x-\frac{2 d}{3}+\frac{h}{3}+\frac{e}{3}-\frac{2 g}{3}+\frac{f}{3}+\frac{i}{3}}{4\left(x^{2}+x+1\right)}+\frac{d \ln \left(x^{2}+x+1\right)}{4}-\frac{\ln \left(x^{2}+x+1\right) f}{8}+\frac{\ln \left(x^{2}+x+1\right) h}{8} \\
& \quad+\frac{d \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) \sqrt{3}}{9}-\frac{2 \sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) e}{9}+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) f}{36}+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) g}{9}
\end{aligned}
$$

$$
+\frac{\sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) h}{36}-\frac{2 \sqrt{3} \arctan \left(\frac{(2 x+1) \sqrt{3}}{3}\right) i}{9}-\frac{\left(\frac{d}{3}+\frac{h}{3}-\frac{e}{3}-\frac{g}{3}-\frac{2 f}{3}+\frac{2 i}{3}\right) x-\frac{2 d}{3}+\frac{h}{3}-\frac{e}{3}+\frac{2 g}{3}+\frac{f}{3}-\frac{i}{3}}{4\left(x^{2}-x+1\right)}
$$

$$
-\frac{d \ln \left(x^{2}-x+1\right)}{4}+\frac{\ln \left(x^{2}-x+1\right) f}{8}-\frac{\ln \left(x^{2}-x+1\right) h}{8}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) d}{9}+\frac{2 \sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) e}{9}
$$

$$
+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) f}{36}-\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) g}{9}+\frac{\sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) h}{36}+\frac{2 \sqrt{3} \arctan \left(\frac{(-1+2 x) \sqrt{3}}{3}\right) i}{9}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 393 leaves, 9 steps):

$$
\begin{aligned}
& \frac{-b e+2 a g-(-b g+2 c e) x^{2}}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{x\left(b^{2} d-a b f-2 a(-a h+c d)+(a b h-2 a c f+b c d) x^{2}\right)}{2 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{(-b g+2 c e) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{3 / 2}} \\
& +\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(b c d-2 a c f+a b h+\frac{4 a b c f+b^{2}(-a h+c d)-4 a c(a h+3 c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{\sqrt{2}} \\
& 4 a\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b-\sqrt{-4 a c+b^{2}}} \\
& +\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b c d-2 a c f+a b h+\frac{-4 a b c f-b^{2}(-a h+c d)+4 a c(a h+3 c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}} \\
& 4 a\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b+\sqrt{-4 a c+b^{2}}}
\end{aligned}
$$

Result(type ?, 7597 leaves): Display of huge result suppressed!
Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{m x^{8}+l x^{7}+k x^{6}+j x^{5}+h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 718 leaves, 13 steps):

$$
\begin{aligned}
& \frac{m x}{c^{2}}+\frac{-b c(a j+c e)+a b^{2} l+2 a c(-a l+c g)-\left(2 c^{3} e-c^{2}(2 a j+b g)-b^{3} l+b c(3 a l+b j)\right) x^{2}}{2 c^{2}\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)} \\
& -\frac{x\left(a b c(a k+c f)-b^{2}\left(a^{2} m+c^{2} d\right)+2 a c\left(a^{2} m-a c h+c^{2} d\right)+\left(a b^{2} c k+2 a c^{2}(-a k+c f)-a b^{3} m-b c\left(-3 a^{2} m+a c h+c^{2} d\right)\right) x^{2}\right)}{2 a c^{2}\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)} \\
& +\frac{\left(4 c^{3} e-c^{2}(-4 a j+2 b g)+b^{3} l-6 a b c l\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{2}\left(-4 a c+b^{2}\right)^{3 / 2}}+\frac{l \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{2}} \\
& +\frac{1}{4 a c^{5 / 2}\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b - \sqrt { - 4 a c + b ^ { 2 } } } }) \left(a b^{2} c k-2 a c^{2}(3 a k+c f)-3 a b^{3} m+b c\left(13 a^{2} m+a c h+c^{2} d\right)\right.\right. \\
& \left.\left.+\frac{-a b^{3} c k+4 a b c^{2}(2 a k+c f)+3 a b^{4} m+b^{2} c\left(-19 a^{2} m-a c h+c^{2} d\right)-4 a c^{2}\left(-5 a^{2} m+a c h+3 c^{2} d\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right) \\
& +\frac{1}{4 a c^{5 / 2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b + \sqrt { - 4 a c + b ^ { 2 } } } }) \left(a b^{2} c k-2 a c^{2}(3 a k+c f)-3 a b^{3} m+b c\left(13 a^{2} m+a c h+c^{2} d\right)\right.\right. \\
& \left.\left.+\frac{a b^{3} c k-4 a b c^{2}(2 a k+c f)-3 a b^{4} m-b^{2} c\left(-19 a^{2} m-a c h+c^{2} d\right)+4 a c^{2}\left(-5 a^{2} m+a c h+3 c^{2} d\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right)
\end{aligned}
$$

Result(type ?, 16516 leaves): Display of huge result suppressed!
Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(x^{4}-5 x^{2}+4\right)^{3}} d x
$$

Optimal(type 3, 206 leaves, 12 steps):

$$
\begin{aligned}
& \frac{5 e+8 g-(2 e+5 g) x^{2}}{36\left(x^{4}-5 x^{2}+4\right)^{2}}+\frac{x\left(17 d+20 f+32 h-(5 d+8 f+20 h) x^{2}\right)}{144\left(x^{4}-5 x^{2}+4\right)^{2}}-\frac{(2 e+5 g)\left(-2 x^{2}+5\right)}{108\left(x^{4}-5 x^{2}+4\right)}-\frac{x\left(59 d+380 f+848 h-5(7 d+28 f+64 h) x^{2}\right)}{3456\left(x^{4}-5 x^{2}+4\right)} \\
& -\frac{(313 d+820 f+1936 h) \operatorname{arctanh}\left(\frac{x}{2}\right)}{20736}+\frac{(13 d+25 f+61 h) \operatorname{arctanh}(x)}{648}-\frac{(2 e+5 g) \ln \left(-x^{2}+1\right)}{162}+\frac{(2 e+5 g) \ln \left(-x^{2}+4\right)}{162}
\end{aligned}
$$

Result(type 3, 461 leaves):

$$
\begin{aligned}
& -\frac{d}{3456(x-2)^{2}}-\frac{e}{1728(x-2)^{2}}-\frac{f}{864(x-2)^{2}}-\frac{g}{432(x-2)^{2}}-\frac{h}{216(x-2)^{2}}+\frac{d}{3456(2+x)^{2}}-\frac{e}{1728(2+x)^{2}}+\frac{f}{864(2+x)^{2}}-\frac{g}{432(2+x)^{2}} \\
& \quad+\frac{h}{216(2+x)^{2}}+\frac{d}{432(x-1)^{2}}+\frac{e}{432(x-1)^{2}}+\frac{f}{432(x-1)^{2}}+\frac{g}{432(x-1)^{2}}+\frac{h}{432(x-1)^{2}}-\frac{d}{432(x+1)^{2}}+\frac{d}{432(x+1)^{2}} \\
& -\frac{f}{432(x+1)^{2}}+\frac{e}{432(x+1)^{2}}-\frac{d}{432(x+1)^{2}}+\frac{313 \ln (x-2) d}{41472}+\frac{\ln (x-2) e}{81}+\frac{\ln (2+x) e}{81}-\frac{313 \ln (2+x) d}{41472}-\frac{13 \ln (x-1) d}{1296} \\
& \quad-\frac{\ln (x-1) e}{81}+\frac{13 \ln (x+1) d}{1296}-\frac{\ln (x+1) e}{81}+\frac{25 \ln (x+1) f}{1296}+\frac{h}{48(x+1)}-\frac{7 g}{432(x+1)}+\frac{5 f}{432(x+1)}-\frac{19}{144(x+1)}+\frac{e}{432(x+1)} \\
& \quad+\frac{205 \ln (x-2) f}{10368}+\frac{5 \ln (x-2) g}{162}+\frac{121 \ln (x-2) h}{2592}+\frac{19 d}{6912(x-2)}+\frac{17 e}{3456(x-2)}+\frac{5 f}{576(x-2)}+\frac{13 g}{864(x-2)}+\frac{11 h}{432(x-2)} \\
& \quad+\frac{19 d}{6912(2+x)}-\frac{17 e}{3456(2+x)}+\frac{5 f}{576(2+x)}-\frac{13 g}{864(2+x)}+\frac{11 h}{432(2+x)}-\frac{205 \ln (2+x) f}{10368}+\frac{5 \ln (2+x) g}{162}-\frac{121 \ln (2+x) h}{2592} \\
& \quad+\frac{d}{432(x-1)}+\frac{e}{144(x-1)}+\frac{5 f}{432(x-1)}+\frac{7 g}{432(x-1)}+\frac{h}{48(x-1)}-\frac{25 \ln (x-1) f}{1296}-\frac{5 \ln (x-1) g}{162}-\frac{61 \ln (x-1) h}{1296}+\frac{61 \ln (x+1) h}{1296} \\
& -\frac{5 \ln (x+1) g}{162}
\end{aligned}
$$

Problem 18: Humongous result has more than 20000 leaves.

$$
\int \frac{i x^{5}+h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 676 leaves, 12 steps):
$\frac{x\left(b^{2} d-a b f-2 a(-a h+c d)+(a b h-2 a c f+b c d) x^{2}\right)}{4 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{2 a c g-b(a i+c e)-\left(-2 a c i+b^{2} i-b c g+2 c^{2} e\right) x^{2}}{4 c\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}$

$$
\begin{aligned}
& +\frac{\left(6 c e-3 b g+2 a i+\frac{b^{2} i}{c}\right)\left(2 c x^{2}+b\right)}{4\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)} \\
& +\frac{x\left(3 b^{4} d+a b^{3} f+8 a^{2} b c f+4 a^{2} c(a h+7 c d)-a b^{2}(7 a h+25 c d)+c\left(3 b^{3} d+a b^{2} f+20 a^{2} c f-12 a b(a h+2 c d)\right) x^{2}\right)}{8 a^{2}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)} \\
& -\frac{\left(2 a c i+b^{2} i-3 b c g+6 c^{2} e\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{5 / 2}} \\
& +\frac{1}{16 a^{2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b - \sqrt { - 4 a c + b ^ { 2 } } }) }) \sqrt { c } \left(3 b^{3} d+a b^{2} f+20 a^{2} c f-12 a b(a h+2 c d)\right.\right. \\
& \left.\left.+\frac{3 b^{4} d+a b^{3} f-52 a^{2} b c f-6 a b^{2}(-3 a h+5 c d)+24 a^{2} c(a h+7 c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right) \\
& +\frac{1}{16 a^{2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b + \sqrt { - 4 a c + b ^ { 2 } } } }) \sqrt { c } \left(3 b^{3} d+a b^{2} f+20 a^{2} c f-12 a b(a h+2 c d)\right.\right. \\
& \left.\left.+\frac{-3 b^{4} d-a b^{3} f+52 a^{2} b c f+6 a b^{2}(-3 a h+5 c d)-24 a^{2} c(a h+7 c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right)
\end{aligned}
$$

Result(type ?, 21160 leaves): Display of huge result suppressed!
Problem 19: Humongous result has more than 20000 leaves.

$$
\int \frac{k x^{11}+j x^{8}+i x^{5}+h x^{4}+g x^{3}+f x^{2}+e x+d}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 1123 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{x\left(c^{2}\left(a b f-b^{2}\left(d+\frac{a^{2} j}{c^{2}}\right)+2 a\left(c d-a h+\frac{a^{2} j}{c}\right)\right)+\left(2 a c^{3} f-a b^{3} j-b c\left(-3 a^{2} j+a c h+c^{2} d\right)\right) x^{2}\right)}{4 a c^{2}\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}} \\
& \quad+\frac{-b c^{3}(a i+c e)+a b^{4} k-4 a^{2} b^{2} c k+2 a c^{2}\left(a^{2} k+c^{2} g\right)-\left(2 c^{5} e+b^{2} c^{3} i-c^{4}(2 a i+b g)-b^{5} k+5 a b^{3} c k-5 a^{2} b c^{2} k\right) x^{2}}{4 c^{4}\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}} \\
& \quad+\frac{1}{8 a^{2} c\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}\left(x \left(c\left(a b^{3} f+8 a^{2} b c f+4 a^{2}\left(-9 a^{2} j+a c h+7 c^{2} d\right)+b^{4}\left(3 d-\frac{2 a^{2} j}{c^{2}}\right)-a b^{2}\left(25 c d+7 a h-\frac{11 a^{2} j}{c}\right)\right)\right.\right. \\
& \left.\left.\quad+\left(a b^{2} c^{2} f+20 a^{2} c^{3} f+b^{3}\left(a^{2} j+3 c^{2} d\right)-4 a b c\left(4 a^{2} j+3 a c h+6 c^{2} d\right)\right) x^{2}\right)\right)+\frac{1}{4 c^{3}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}\left(b^{3} c^{2} i+2 b c^{3}(a i\right. \\
& \left.\quad+3 c e)+11 a b^{4} k-\frac{b^{6} k}{c}+32 a^{3} c^{2} k-3 b^{2}\left(13 a^{2} c k+c^{3} g\right)+2\left(6 c^{5} e+b^{2} c^{3} i-c^{4}(-2 a i+3 b g)+2 b^{5} k-15 a b^{3} c k+25 a^{2} b c^{2} k\right) x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(12 c^{5} e+2 b^{2} c^{3} i-c^{4}(-4 a i+6 b g)-b^{5} k+10 a b^{3} c k-30 a^{2} b c^{2} k\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{3}\left(-4 a c+b^{2}\right)^{5 / 2}}+\frac{k \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{3}} \\
& +\frac{1}{16 a^{2} c^{3 / 2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b - \sqrt { - 4 a c + b ^ { 2 } } } }) \left(a b^{2} c^{2} f+20 a^{2} c^{3} f+b^{3}\left(a^{2} j+3 c^{2} d\right)-4 a b c\left(4 a^{2} j+3 a c h\right.\right.\right. \\
& \left.\left.\left.+6 c^{2} d\right)+\frac{a b^{3} c^{2} f-52 a^{2} b c^{3} f-6 a b^{2} c\left(-3 a^{2} j-3 a c h+5 c^{2} d\right)+b^{4}\left(-a^{2} j+3 c^{2} d\right)+8 a^{2} c^{2}\left(5 a^{2} j+3 a c h+21 c^{2} d\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right) \\
& +\frac{1}{16 a^{2} c^{3 / 2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b + \sqrt { - 4 a c + b ^ { 2 } } } }) \left(a b^{2} c^{2} f+20 a^{2} c^{3} f+b^{3}\left(a^{2} j+3 c^{2} d\right)-4 a b c\left(4 a^{2} j+3 a c h\right.\right.\right. \\
& \left.\left.\left.+6 c^{2} d\right)+\frac{-a b^{3} c^{2} f+52 a^{2} b c^{3} f+6 a b^{2} c\left(-3 a^{2} j-3 a c h+5 c^{2} d\right)-b^{4}\left(-a^{2} j+3 c^{2} d\right)-8 a^{2} c^{2}\left(5 a^{2} j+3 a c h+21 c^{2} d\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right)
\end{aligned}
$$

Result(type ?, 35335 leaves): Display of huge result suppressed!
Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{a d+a e x+(a f+b d) x^{2}+b e x^{3}+(b f+c d) x^{4}+c e x^{5}+c f x^{6}}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 171 leaves, 9 steps):

Result(type 3, 615 leaves):

$$
\begin{aligned}
& +\frac{\sqrt{-4 a c+b^{2}} \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) e}{2\left(4 a c-b^{2}\right)}+\frac{2 c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) f a}{\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) f b^{2}}{2\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}} \\
& -\frac{\sqrt{-4 a c+b^{2}} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b f}{2\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{\sqrt{-4 a c+b^{2}} c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) d}{\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}
\end{aligned}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{a d+a e x+(a f+b d) x^{2}+b e x^{3}+(b f+c d) x^{4}+c e x^{5}+c f x^{6}}{\left(c x^{4}+b x^{2}+a\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 320 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{e\left(2 c x^{2}+b\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{x\left(b^{2} d-2 a d c-a b f+c(-2 a f+b d) x^{2}\right)}{2 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{2 c e \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{3 / 2}} \\
& +\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b d-2 a f+\frac{4 a b f-12 a d c+b^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{\sqrt{2}} \\
& 4 a\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}} \\
& +\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b d-2 a f+\frac{-4 a b f+12 a d c-b^{2} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{} \\
& 4 a\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}
\end{aligned}
$$

Result(type ?, 2850 leaves): Display of huge result suppressed!
Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{a d+a e x+(a f+b d) x^{2}+b e x^{3}+(b f+c d) x^{4}+c e x^{5}+c f x^{6}}{\left(c x^{4}+b x^{2}+a\right)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 561 leaves, 13 steps):
$-\frac{e\left(2 c x^{2}+b\right)}{4\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{x\left(b^{2} d-2 a d c-a b f+c(-2 a f+b d) x^{2}\right)}{4 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)^{2}}+\frac{3 c e\left(2 c x^{2}+b\right)}{2\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}$

$$
\begin{aligned}
& +\frac{x\left(3 b^{4} d-25 a b^{2} c d+28 a^{2} c^{2} d+a b^{3} f+8 a^{2} b c f+c\left(20 a^{2} c f+a b^{2} f-24 a b c d+3 b^{3} d\right) x^{2}\right)}{8 a^{2}\left(-4 a c+b^{2}\right)^{2}\left(c x^{4}+b x^{2}+a\right)}-\frac{6 c^{2} e \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{5 / 2}} \\
& +\frac{1}{16 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2} \sqrt{b-\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } \left(\frac{x \sqrt{2} \sqrt{c}}{\left.\sqrt{b-\sqrt{-4 a c+b^{2}}}\right) \sqrt{c}\left(3 b^{4} d+b^{3}\left(a f+3 d \sqrt{-4 a c+b^{2}}\right)-4 a b c(13 a f\right.}\right.\right. \\
& \left.\left.\left.+6 d \sqrt{-4 a c+b^{2}}\right)-a b^{2}\left(30 c d-f \sqrt{-4 a c+b^{2}}\right)+4 a^{2} c\left(42 c d+5 f \sqrt{-4 a c+b^{2}}\right)\right) \sqrt{2}\right) \\
& +\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(3 b^{3} d-24 a b c d+a b^{2} f+20 a^{2} c f+\frac{52 a^{2} b c f-168 a^{2} c^{2} d-a b^{3} f+30 a b^{2} c d-3 b^{4} d}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{16 a^{2}\left(-4 a c+b^{2}\right)^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type ?, 10808 leaves): Display of huge result suppressed!
Test results for the 41 problems in "1.2.2.6 P(x) (d x)^m (abb $\left.x^{\wedge} 2+c x^{\wedge} 4\right)^{\wedge} p . t x t "$
Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}\left(C x^{2}+B x+A\right)}{c x^{4}+b x^{2}+a} \mathrm{~d} x
$$

Optimal(type 3, 227 leaves, 11 steps):

$$
\begin{aligned}
\frac{C x}{c}+\frac{B \ln \left(c x^{4}+b x^{2}+a\right)}{4 c}+\frac{b B \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c \sqrt{-4 a c+b^{2}}}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\left.\sqrt{b-\sqrt{-4 a c+b^{2}}}\right)\left(A c-b C+\frac{-A b c+\left(-2 a c+b^{2}\right) C}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}\right.}{2 c^{3 / 2} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(A c-b C+\frac{A b c+2 a c C-b^{2} C}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 c^{3 / 2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type 3, 1326 leaves):

$$
\begin{aligned}
\frac{C x}{c} & +\frac{B \ln \left(-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b\right) b \sqrt{-4 a c+b^{2}}}{4 c\left(4 a c-b^{2}\right)}+\frac{B \ln \left(-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b\right) a}{4 a c-b^{2}}-\frac{B \ln \left(-2 c x^{2}+\sqrt{-4 a c+b^{2}}-b\right) b^{2}}{4 c\left(4 a c-b^{2}\right)} \\
& -\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) A b \sqrt{-4 a c+b^{2}}}{2\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{2 c \sqrt{2 \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) A a}}{\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}
\end{aligned}
$$

$+\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{\left.-4 a c+b^{2}\right) c}\right.}\right)}\right) A b^{2}}{2\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}\right) C\left(-4 a c+b^{2}\right) b}\right.}{4 c\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}$
$-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right)\left(C \sqrt{-4 a c+b^{2}} a\right.}{\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{2 c\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}$
$+\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right) b C a \quad \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{b^{3} C}{4 c\left(4 a c-b^{2}\right) \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}$
$-\frac{B \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) b \sqrt{-4 a c+b^{2}}}{4 c\left(4 a c-b^{2}\right)}+\frac{B \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) a}{4 a c-b^{2}}-\frac{B \ln \left(2 c x^{2}+\sqrt{-4 a c+b^{2}}+b\right) b^{2}}{4 c\left(4 a c-b^{2}\right)}$
$-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{\left.-4 a c+b^{2}\right) c}\right.}\right)}\left(A b \sqrt{-4 a c+b^{2}}\right.\right.}{2\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{2 c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}$

$$
-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right) A b^{2}}{2\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right) C\left(-4 a c+b^{2}\right) b}{4 c\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}
$$

$$
-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) C \sqrt{-4 a c+b^{2}} a}{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) C \sqrt{-4 a c+b^{2}} b^{2}}
$$

$$
-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) \frac{b C a}{\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{4 c\left(4 a c-b^{2}\right) \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}}{(4 c}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}\left(C x^{2}+B x+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 363 leaves, 11 steps):

$$
\begin{gathered}
\left.\frac{(2 A c-b C) x}{2 c\left(-4 a c+b^{2}\right)}+\frac{B x^{2}\left(b x^{2}+2 a\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}-\frac{x^{3}\left(A b-2 a C+(2 A c-b C) x^{2}\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{2 a B \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{3 / 2}}\right)\left(A b c+\left(-6 a c+b^{2}\right) C+\frac{-A c\left(4 a c+b^{2}\right)-b\left(-8 a c+b^{2}\right) C}{\left.\sqrt{-4 a c+b^{2}}\right) \sqrt{2}}\right. \\
+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)}{} \begin{array}{l}
\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(A b c+\left(-6 a c+b^{2}\right) C+\frac{A c\left(4 a c+b^{2}\right)+b\left(-8 a c+b^{2}\right) C}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2} \\
+\frac{4 c^{3 / 2}\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}}{4}-\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}
\end{array}
\end{gathered}
$$

Result(type ?, 5282 leaves): Display of huge result suppressed!
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{C x^{2}+B x+A}{x^{2}\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 452 leaves, 15 steps):

$$
\begin{aligned}
& \frac{10 a A c-3 A b^{2}+a b C}{2 a^{2}\left(-4 a c+b^{2}\right) x}+\frac{B\left(c x^{2} b-2 a c+b^{2}\right)}{2 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{A\left(-2 a c+b^{2}\right)-a b C+c(A b-2 a C) x^{2}}{2 a\left(-4 a c+b^{2}\right) x\left(c x^{4}+b x^{2}+a\right)}+\frac{b B\left(-6 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\quad+\frac{\ln (x) B}{a^{2}}-\frac{B \ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{2}}} \\
& \quad \arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(-a C\left(b^{2}-12 a c+b \sqrt{-4 a c+b^{2}}\right)+A\left(3 b^{3}-16 a b c+3 b^{2} \sqrt{-4 a c+b^{2}}-10 a c \sqrt{-4 a c+b^{2}}\right)\right) \sqrt{2} \\
& \left.-\frac{4 a^{2}\left(-4 a c+b^{2}\right)^{3 / 2} \sqrt{b-\sqrt{-4 a c+b^{2}}}}{2}\right) \\
& -\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(3 A b^{2}-10 a A c-a b C+\frac{-A\left(-16 a b c+3 b^{3}\right)+a\left(-12 a c+b^{2}\right) C}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{4 a^{2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type ?, 6476 leaves): Display of huge result suppressed!
Problem 13: Result more than twice size of optimal antiderivative.

$$
\int(d x)^{m}\left(C x^{2}+B x+A\right)\left(c x^{4}+b x^{2}+a\right) \mathrm{d} x
$$

Optimal(type 3, 137 leaves, 2 steps):

$$
\frac{a A(d x)^{1+m}}{d(1+m)}+\frac{a B(d x)^{2+m}}{d^{2}(2+m)}+\frac{(A b+a C)(d x)^{3+m}}{d^{3}(3+m)}+\frac{b B(d x)^{4+m}}{d^{4}(4+m)}+\frac{(A c+b C)(d x)^{5+m}}{d^{5}(5+m)}+\frac{B c(d x)^{6+m}}{d^{6}(6+m)}+\frac{c C(d x)^{7+m}}{d^{7}(7+m)}
$$

Result(type 3, 584 leaves):
$\frac{1}{(7+m)(6+m)(5+m)(4+m)(3+m)(2+m)(1+m)}\left(x\left(C c m^{6} x^{6}+B c m^{6} x^{5}+21 C c m^{5} x^{6}+A c m^{6} x^{4}+22 B c m^{5} x^{5}+C b m^{6} x^{4}+175 C c m^{4} x^{6}\right.\right.$
$+23 A c m^{5} x^{4}+B b m^{6} x^{3}+190 B c m^{4} x^{5}+23 C b m^{5} x^{4}+735 C c m^{3} x^{6}+A b m^{6} x^{2}+207 A c m^{4} x^{4}+24 B b m^{5} x^{3}+820 B c m^{3} x^{5}+C a m^{6} x^{2}+207 C b m^{4} x^{4}$
$+1624 C c m^{2} x^{6}+25 A b m^{5} x^{2}+925 A c m^{3} x^{4}+B a m^{6} x+226 B b m^{4} x^{3}+1849 B c m^{2} x^{5}+25 C a m^{5} x^{2}+925 C b m^{3} x^{4}+1764 C c m x^{6}+A a m^{6}$
$+247 A b m^{4} x^{2}+2144 A c m^{2} x^{4}+26 B a m^{5} x+1056 B b m^{3} x^{3}+2038 B c m x^{5}+247 C a m^{4} x^{2}+2144 C b m^{2} x^{4}+720 C c x^{6}+27 A a m^{5}+1219 A b m^{3} x^{2}$
$+2412 A c m x^{4}+270 B a m^{4} x+2545 B b m^{2} x^{3}+840 B c x^{5}+1219 C a m^{3} x^{2}+2412 C b m x^{4}+295 A a m^{4}+3112 A b m^{2} x^{2}+1008 A c x^{4}+1420 B a m^{3} x$
$+2952 B b m x^{3}+3112 C a m^{2} x^{2}+1008 C b x^{4}+1665 A a m^{3}+3796 A b m x^{2}+3929 B a m^{2} x+1260 b B x^{3}+3796 C a m x^{2}+5104 A a m^{2}+1680 A b x^{2}$
$\left.\left.+5274 B a m x+1680 C a x^{2}+8028 A a m+2520 a B x+5040 A a\right)(d x)^{m}\right)$

Problem 14: Unable to integrate problem.

$$
\int \frac{(d x)^{m}\left(C x^{2}+B x+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 629 leaves, 10 steps):

$$
\begin{aligned}
& \frac{B(d x)^{2+m}\left(c x^{2} b-2 a c+b^{2}\right)}{2 a\left(-4 a c+b^{2}\right) d^{2}\left(c x^{4}+b x^{2}+a\right)}+\frac{(d x)^{1+m}\left(A\left(-2 a c+b^{2}\right)-a b C+c(A b-2 a C) x^{2}\right)}{2 a\left(-4 a c+b^{2}\right) d\left(c x^{4}+b x^{2}+a\right)} \\
& +\frac{B c(d x)^{2+m} \text { hypergeom }\left(\left[1,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right],-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right)\left(4 a c(2-m)+b m\left(b-\sqrt{-4 a c+b^{2}}\right)\right)}{2 a\left(-4 a c+b^{2}\right)^{3 / 2} d^{2}(2+m)\left(b+\sqrt{-4 a c+b^{2}}\right)} \\
& B c(d x)^{2+m} \text { hypergeom }\left(\left[1,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right],-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}\right)\left(4 a c(2-m)+b m\left(b+\sqrt{-4 a c+b^{2}}\right)\right) \\
& 2 a\left(-4 a c+b^{2}\right)^{3 / 2} d^{2}(2+m)\left(b-\sqrt{-4 a c+b^{2}}\right) \\
& -\frac{1}{2 a\left(-4 a c+b^{2}\right)^{3 / 2} d(1+m)\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(c(d x)^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-\frac{2 x^{2} c}{b+\sqrt{-4 a c+b^{2}}}\right)(2 a C(2 b+(1\right. \\
& \left.\left.\left.-m) \sqrt{-4 a c+b^{2}}\right)+A\left(b^{2}(1-m)-4 a c(3-m)-b(1-m) \sqrt{-4 a c+b^{2}}\right)\right)\right) \\
& +\frac{1}{2 a\left(-4 a c+b^{2}\right)^{3 / 2} d(1+m)\left(b-\sqrt{-4 a c+b^{2}}\right)}\left(c(d x)^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-\frac{2 x^{2} c}{b-\sqrt{-4 a c+b^{2}}}\right)(2 a C(2 b-(1\right. \\
& \left.\left.\left.-m) \sqrt{-4 a c+b^{2}}\right)+A\left(b^{2}(1-m)-4 a c(3-m)+b(1-m) \sqrt{-4 a c+b^{2}}\right)\right)\right)
\end{aligned}
$$

Result(type 8, 32 leaves):

$$
\int \frac{(d x)^{m}\left(C x^{2}+B x+A\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{C x^{5}+B x^{4}+A x^{3}}{x\left(c x^{4}+b x^{2}+a\right)^{2}} d x
$$

Optimal(type 3, 306 leaves, 11 steps):

$$
4\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b+\sqrt{-4 a c+b^{2}}}
$$

Result(type ?, 4062 leaves): Display of huge result suppressed!
Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{7}\left(f x^{4}+e x^{2}+d\right)}{c x^{4}+b x^{2}+a} d x
$$

Optimal(type 3, 257 leaves, 7 steps):
$\frac{\left(b^{2} c e-a c^{2} e-b^{3} f-b c(-2 a f+c d)\right) x^{2}}{2 c^{4}}+\frac{\left(c^{2} d+b^{2} f-c(a f+b e)\right) x^{4}}{4 c^{3}}+\frac{(-b f+c e) x^{6}}{6 c^{2}}+\frac{f x^{8}}{8 c}$
$-\frac{\left(b^{3} c e-2 a b c^{2} e-b^{4} f-b^{2} c(-3 a f+c d)+a c^{2}(-a f+c d)\right) \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{5}}$

$$
-\left(b^{4} c e-4 a b^{2} c^{2} e+2 a^{2} c^{3} e-b^{5} f-b^{3} c(-5 a f+c d)+a b c^{2}(-5 a f+3 c d)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)
$$

$$
2 c^{5} \sqrt{-4 a c+b^{2}}
$$

Result(type 3, 621 leaves):

$$
\begin{aligned}
& \frac{B\left(b x^{2}+2 a\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}-\frac{x\left(A b-2 a C+(2 A c-b C) x^{2}\right)}{2\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}-\frac{b B \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{3 / 2}} \\
& -\underline{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(2 A c-b C+\frac{-4 A b c+\left(4 a c+b^{2}\right) C}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2} .} \\
& 4\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b-\sqrt{-4 a c+b^{2}}} \\
& -\underline{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(2 A c-b C+\frac{4 A b c-\left(4 a c+b^{2}\right) C}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2} .}
\end{aligned}
$$

$$
\begin{aligned}
\frac{f x^{8}}{8 c} & +\frac{a b f x^{2}}{c^{3}}-\frac{3 \ln \left(c x^{4}+b x^{2}+a\right) a b^{2} f}{4 c^{4}}+\frac{x^{6} e}{6 c}+\frac{x^{4} d}{4 c}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) a b e}{2 c^{3}}+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a^{2} e}{c^{2} \sqrt{4 a c-b^{2}}}-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{5} f}{2 c^{5} \sqrt{4 a c-b^{2}}} \\
& +\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{4} e}{2 c^{4} \sqrt{4 a c-b^{2}}}-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{3} d}{2 c^{3} \sqrt{4 a c-b^{2}}}-\frac{x^{6} b f}{6 c^{2}}-\frac{x^{4} a f}{4 c^{2}}+\frac{x^{4} b^{2} f}{4 c^{3}}-\frac{x^{4} b e}{4 c^{2}}-\frac{x^{2} a e}{2 c^{2}}-\frac{b^{3} f x^{2}}{2 c^{4}}+\frac{x^{2} b^{2} e}{2 c^{3}}-\frac{b d x^{2}}{2 c^{2}} \\
& +\frac{\ln \left(c x^{4}+b x^{2}+a\right) a^{2} f}{4 c^{3}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) a d}{4 c^{2}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{4} f}{4 c^{5}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{3} e}{4 c^{4}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{2} d}{4 c^{3}} \\
& -\frac{5 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a^{2} b f}{2 c^{3} \sqrt{4 a c-b^{2}}}+\frac{5 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a b^{3} f}{2 c^{4} \sqrt{4 a c-b^{2}}}-\frac{2 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a b^{2} e}{3 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a b d} \\
& +\frac{c^{3} \sqrt{4 a c-b^{2}}}{2 c^{2} \sqrt{4 a c-b^{2}}}
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}\left(f x^{4}+e x^{2}+d\right)}{c x^{4}+b x^{2}+a} d x
$$

Optimal(type 3, 132 leaves, 7 steps):

$$
\frac{(-b f+c e) x^{2}}{2 c^{2}}+\frac{f x^{4}}{4 c}+\frac{\left(c^{2} d+b^{2} f-c(a f+b e)\right) \ln \left(c x^{4}+b x^{2}+a\right)}{4 c^{3}}-\frac{\left(b^{2} c e-2 a c^{2} e-b^{3} f-b c(-3 a f+c d)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{3} \sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 320 leaves):

$$
\begin{aligned}
\frac{f x^{4}}{4 c}- & \frac{x^{2} b f}{2 c^{2}}+\frac{x^{2} e}{2 c}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) a f}{4 c^{2}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) b^{2} f}{4 c^{3}}-\frac{\ln \left(c x^{4}+b x^{2}+a\right) b e}{4 c^{2}}+\frac{\ln \left(c x^{4}+b x^{2}+a\right) d}{4 c}+\frac{3 \arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a b f}{2 c^{2} \sqrt{4 a c-b^{2}}} \\
& -\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) a e}{c \sqrt{4 a c-b^{2}}}-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{3} f}{2 c^{3} \sqrt{4 a c-b^{2}}}+\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b^{2} e}{2 c^{2} \sqrt{4 a c-b^{2}}}-\frac{\arctan \left(\frac{2 c x^{2}+b}{\sqrt{4 a c-b^{2}}}\right) b d}{2 c \sqrt{4 a c-b^{2}}}
\end{aligned}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}\left(f x^{4}+e x^{2}+d\right)}{c x^{4}+b x^{2}+a} d x
$$

Optimal(type 3, 244 leaves, 5 steps):
$\frac{(-b f+c e) x}{c^{2}}+\frac{f x^{3}}{3 c}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(c^{2} d-b c e+b^{2} f-a c f+\frac{b^{2} c e-2 a c^{2} e-b^{3} f-b c(-3 a f+c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{\sqrt{\sqrt{-4 c+b^{2}}}}$
$+\xrightarrow{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(c^{2} d-b c e+b^{2} f-a c f+\frac{-b^{2} c e+2 a c^{2} e+b^{3} f+b c(-3 a f+c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}$

$$
2 c^{5} / 2 \sqrt{b+\sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 1034 leaves):

$$
\begin{aligned}
& \frac{f x^{3}}{3 c}-\frac{b f x}{c^{2}}+\frac{e x}{c}+\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) a f}{2 c \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b^{2} f}{2 c^{2} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}} \\
& +\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b e}{2 c \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) d}{2 \sqrt{\left(-b+\sqrt{\left.-4 a c+b^{2}\right)_{c}}\right.}}-\frac{3 \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{2 c \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}} \\
& +\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) a e \quad \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{3} f \quad \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}\right) b^{2} e \\
& \sqrt{-4 a c+b^{2} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}+\frac{2 c^{2} \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}{2 c \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}} \\
& +\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b d}{2 \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right) a f}{2 c \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}+\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}\right)}\right.}{2 b^{2} f} \\
& -\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b e}{2 c \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}+\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) d}{2 \sqrt{\left(b+\sqrt{\left.-4 a c+b^{2}\right)_{c}}\right.}}-\frac{3 \sqrt{2 \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right)} \frac{a b f}{2 c \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}}{2 \sqrt{(b \sqrt{-4}}} \\
& +\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) a e}{\sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}+\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\left.\sqrt{\left(b+\sqrt{\left.-4 a c+b^{2}\right) c}\right.}\right)}\right) b^{3} f}{2 c^{2} \sqrt{-4 a c+b^{2} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{\sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}\right)}{2 c \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right) c}}}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{f x^{4}+e x^{2}+d}{x^{4}\left(c x^{4}+b x^{2}+a\right)} d x
$$

Optimal(type 3, 226 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{d}{3 a x^{3}}+\frac{-a e+b d}{x a^{2}}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b d-a e+\frac{b^{2} d-e a b-2 a(-a f+c d)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 a^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& \quad \arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b^{2} d-b\left(a e+d \sqrt{-4 a c+b^{2}}\right)-a\left(2 c d-2 a f-e \sqrt{-4 a c+b^{2}}\right)\right) \sqrt{2}
\end{aligned}
$$

$$
2 a^{2} \sqrt{-4 a c+b^{2}} \sqrt{b+\sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 726 leaves):

$$
\begin{aligned}
& c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) e^{c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b d \quad-\frac{c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right)}{f}} \\
& 2 a \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}} \quad 2 a^{2} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}} \quad \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}} \\
& +\frac{c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) e b}{2 a \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}+\frac{c^{2} \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) d}{a \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right) c}}-\frac{c \sqrt{2} \operatorname{arctanh}\left(\frac{c x \sqrt{2}}{\sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{2} d}{2 a^{2} \sqrt{-4 a c+b^{2}} \sqrt{\left(-b+\sqrt{-4 a c+b^{2}}\right)_{c}}} \\
& -\frac{c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) e}{}+\frac{c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b d}{\sqrt{\left(b \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right)\right.} \text { f}} \\
& +\frac{c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) e b}{2 a \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}+\frac{c^{2} \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) d}{a \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}-\frac{c \sqrt{2} \arctan \left(\frac{c x \sqrt{2}}{\sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}\right) b^{2} d}{2 a^{2} \sqrt{-4 a c+b^{2}} \sqrt{\left(b+\sqrt{-4 a c+b^{2}}\right)_{c}}}
\end{aligned}
$$

$-\frac{d}{3 a x^{3}}-\frac{e}{a x}+\frac{b d}{a^{2} x}$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{f x^{4}+e x^{2}+d}{x\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 156 leaves, 8 steps):

$$
\frac{b^{2} d-e a b-2 a(-a f+c d)+(a b f-2 a c e+b c d) x^{2}}{2 a\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}+\frac{\left(b^{3} d+4 a^{2} c e-2 a b(a f+3 c d)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 a^{2}\left(-4 a c+b^{2}\right)^{3 / 2}}+\frac{d \ln (x)}{a^{2}}
$$

$$
-\frac{d \ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{2}}
$$

Result(type 3, 743 leaves):

$$
\begin{aligned}
& -\frac{x^{2} b f}{2\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{c x^{2} e}{\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{x^{2} b c d}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{d c}{\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{b e}{2\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{a f}{\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{b^{2} d}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) d}{a\left(4 a c-b^{2}\right)} \\
& +\frac{\ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{2} d}{4 a^{2}\left(4 a c-b^{2}\right)}-\frac{\arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\left.\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}\right) b f}\right.}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}} \\
& \left.\left.+\frac{2 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) c e}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) \quad 3 \operatorname{arctan(\frac {2(4ac-b^{2})cx^{2}+(4ac-b^{2})b}{\sqrt {64a^{3}c^{3}-48a^{2}b^{2}c^{2}+12ab^{4}c-b^{6}}})bcd}\right) a \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}} \\
& \\
& +\frac{\arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{3} d}{2 a^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}+\frac{d \ln (x)}{a^{2}}
\end{aligned}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{f x^{4}+e x^{2}+d}{x^{3}\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 222 leaves, 8 steps):

$$
-\frac{d}{2 a^{2} x^{2}}+\frac{-b^{3} d+a b^{2} e-2 a^{2} c e+a b(-a f+3 c d)-c\left(b^{2} d-e a b-2 a(-a f+c d)\right) x^{2}}{2 a^{2}\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}
$$

$-\frac{\left(2 b^{4} d-12 a b^{2} c d-a b^{3} e+6 a^{2} b c e+4 a^{2} c(-a f+3 c d)\right) \operatorname{arctanh}\left(\frac{2 c x^{2}+b}{\sqrt{-4 a c+b^{2}}}\right)}{2 a^{3}\left(-4 a c+b^{2}\right)^{3 / 2}}-\frac{(-a e+2 b d) \ln (x)}{a^{3}}+\frac{(-a e+2 b d) \ln \left(c x^{4}+b x^{2}+a\right)}{4 a^{3}}$
Result(type 3, 1155 leaves):

$$
\begin{aligned}
& \frac{c x^{2} f}{\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{c x^{2} e b}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{c^{2} x^{2} d}{a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{c x^{2} b^{2} d}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{b f}{2\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}+\frac{c e}{\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{b^{2} e}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{3 b c d}{2 a\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{b^{3} d}{2 a^{2}\left(c x^{4}+b x^{2}+a\right)\left(4 a c-b^{2}\right)}-\frac{c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) e}{a\left(4 a c-b^{2}\right)}+\frac{\ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{2} e}{4 a^{2}\left(4 a c-b^{2}\right)} \\
& +\frac{2 c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b d}{a^{2}\left(4 a c-b^{2}\right)}-\frac{\ln \left(\left(4 a c-b^{2}\right)\left(c x^{4}+b x^{2}+a\right)\right) b^{3} d}{2 a^{3}\left(4 a c-b^{2}\right)}+\frac{2 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) c f}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}} \\
& -\frac{3 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b c e}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}-\frac{6 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) c^{2} d}{a \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}} \\
& +\frac{\arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{3} e}{2 a^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}+\frac{6 \arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{2} c d}{a^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}} \\
& -\frac{\arctan \left(\frac{2\left(4 a c-b^{2}\right) c x^{2}+\left(4 a c-b^{2}\right) b}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{4} d}{a^{3} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}-\frac{d}{2 a^{2} x^{2}}+\frac{\ln (x) e}{a^{2}}-\frac{2 \ln (x) b d}{a^{3}}
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}\left(f x^{4}+e x^{2}+d\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 321 leaves, 4 steps):
$-\frac{x\left(b c d-2 a c e+a b f+\left(-2 a c f+b^{2} f-b c e+2 c^{2} d\right) x^{2}\right)}{2 c\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)}$

$$
\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right)\left(2 c d-b e+6 a f-\frac{b^{2} f}{c}+\frac{b^{2} c e+4 a c^{2} e+b^{3} f-4 b c(2 a f+c d)}{c \sqrt{-4 a c+b^{2}}}\right) \sqrt{2}
$$

$$
4\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b-\sqrt{-4 a c+b^{2}}}
$$

$$
\arctan \left(\frac{x \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(2 c d-b e+6 a f-\frac{b^{2} f}{c}+\frac{-b^{2} c e-4 a c^{2} e-b^{3} f+4 b c(2 a f+c d)}{c \sqrt{-4 a c+b^{2}}}\right) \sqrt{2}
$$

$$
4\left(-4 a c+b^{2}\right) \sqrt{c} \sqrt{b+\sqrt{-4 a c+b^{2}}}
$$

Result(type ?, 5527 leaves): Display of huge result suppressed!
Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{5 x^{6}+3 x^{4}+x^{2}+4}{\left(x^{4}+2 x^{2}+3\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 154 leaves, 10 steps):

$$
\begin{aligned}
& \frac{25 x\left(-x^{2}+1\right)}{24\left(x^{4}+2 x^{2}+3\right)}-\frac{\arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-69402+77382 \sqrt{3}}}{288}+\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-69402+77382 \sqrt{3}}}{288} \\
& \quad+\frac{\ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{69402+77382 \sqrt{3}}}{576}-\frac{\ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{69402+77382 \sqrt{3}}}{576}
\end{aligned}
$$

Result(type 3, 407 leaves):
$\frac{-\frac{25}{24} x^{3}+\frac{25}{24} x}{x^{4}+2 x^{2}+3}-\frac{139 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{576}-\frac{11 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{48}$

$+\frac{139 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{576}+\frac{11 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{48}$
$+\frac{139 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{288 \sqrt{2+2 \sqrt{3}}}+\frac{11 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{24 \sqrt{2+2 \sqrt{3}}}+\frac{7 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}) \sqrt{3}}\right.}{72 \sqrt{2+2 \sqrt{3}}}$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{10}\left(5 x^{6}+3 x^{4}+x^{2}+4\right)}{\left(x^{4}+2 x^{2}+3\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 187 leaves, 13 steps):
$58 x-9 x^{3}+x^{5}-\frac{25 x\left(7 x^{2}+15\right)}{16\left(x^{4}+2 x^{2}+3\right)^{2}}+\frac{x\left(252 x^{2}+3305\right)}{64\left(x^{4}+2 x^{2}+3\right)}+\frac{3 \arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-8595619+7678611 \sqrt{3}}}{256}$

$$
\begin{aligned}
& -\frac{3 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-8595619+7678611 \sqrt{3}}}{256} \\
& -\frac{3 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{8595619+7678611 \sqrt{3}}}{512}
\end{aligned}
$$

Result(type 3, 428 leaves):

$$
\begin{aligned}
& x^{5}-9 x^{3}+58 x+\frac{\frac{63}{16} x^{7}+\frac{3809}{64} x^{5}+\frac{3333}{32} x^{3}+\frac{8415}{64} x}{\left(x^{4}+2 x^{2}+3\right)^{2}}-\frac{5091 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024} \\
&-\frac{14385 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024} \\
&\left.+\frac{14385 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3} \\
&+\frac{5091 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)\left(\frac{5647 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}\right.}{5091 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}} \\
& 1024 \\
&+\frac{14385 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024} \\
&+\frac{5091 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}
\end{aligned}
$$

$$
-\frac{4647 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{3}}{64 \sqrt{2+2 \sqrt{3}}}
$$

[^4]$$
\int \frac{x^{8}\left(5 x^{6}+3 x^{4}+x^{2}+4\right)}{\left(x^{4}+2 x^{2}+3\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 184 leaves, 13 steps):

$$
\begin{aligned}
&-27 x+\frac{5 x^{3}}{3}+\frac{25 x\left(5 x^{2}+3\right)}{16\left(x^{4}+2 x^{2}+3\right)^{2}}-\frac{x\left(835 x^{2}+1468\right)}{64\left(x^{4}+2 x^{2}+3\right)}-\frac{21 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-34271+22721 \sqrt{3}}}{512} \\
&+\frac{21 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-34271+22721 \sqrt{3}}}{512} \\
&+\frac{21 \arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{34271+22721 \sqrt{3}}}{256} \\
& 21 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{34271+22721 \sqrt{3}} \\
& 256
\end{aligned}
$$

Result(type 3, 425 leaves):
$\frac{5 x^{3}}{3}-27 x+\frac{-\frac{835}{64} x^{7}-\frac{1569}{32} x^{5}-\frac{4941}{64} x^{3}-\frac{513}{8} x}{\left(x^{4}+2 x^{2}+3\right)^{2}}-\frac{693 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024}$

$$
+\frac{3675 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024}+\frac{693 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}
$$

$$
-\frac{3675 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}+\frac{273 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{3}}{8 \sqrt{2+2 \sqrt{3}}}
$$

$$
+\frac{693 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024}-\frac{3675 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024}
$$

$$
+\frac{693 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}-\frac{3675 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}+\frac{273 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{3}}{8 \sqrt{2+2 \sqrt{3}}}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{6}\left(5 x^{6}+3 x^{4}+x^{2}+4\right)}{\left(x^{4}+2 x^{2}+3\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 179 leaves, 13 steps):
$5 x+\frac{25 x\left(-x^{2}+3\right)}{16\left(x^{4}+2 x^{2}+3\right)^{2}}+\frac{7 x\left(58 x^{2}+11\right)}{64\left(x^{4}+2 x^{2}+3\right)}-\frac{\ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-827621+1176531 \sqrt{3}}}{512}$

$-\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{827621+1176531 \sqrt{3}}}{256}$
Result(type 3, 421 leaves):
$5 x-\frac{-\frac{203}{32} x^{7}-\frac{889}{64} x^{5}-\frac{159}{8} x^{3}-\frac{531}{64} x}{\left(x^{4}+2 x^{2}+3\right)^{2}}+\frac{943 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024}+\frac{185 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024}$
$-\frac{943 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}-\frac{185 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}-\frac{379 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}) \sqrt{3}}\right.}{64 \sqrt{2+2 \sqrt{3}}}$
$-\frac{943 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024}-\frac{185 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024}$
$-\frac{943 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}-\frac{185 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}-\frac{379 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}})}{\sqrt{2+2 \sqrt{3}})}-\frac{\sqrt{3}}{64 \sqrt{2+2 \sqrt{3}}}\right.}{-\frac{20}{}}$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}\left(5 x^{6}+3 x^{4}+x^{2}+4\right)}{\left(x^{4}+2 x^{2}+3\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 174 leaves, 11 steps):
$-\frac{25 x\left(x^{2}+3\right)}{16\left(x^{4}+2 x^{2}+3\right)^{2}}+\frac{x\left(-59 x^{2}+238\right)}{64\left(x^{4}+2 x^{2}+3\right)}-\frac{\arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-146505+98481 \sqrt{3}}}{256}$

$$
\begin{aligned}
& +\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-146505+98481 \sqrt{3}}}{256}+\frac{\ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{146505+98481 \sqrt{3}}}{512} \\
& -\frac{\ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{146505+98481 \sqrt{3}}}{512}
\end{aligned}
$$

Result(type 3, 417 leaves):

$$
\begin{aligned}
& \frac{-\frac{59}{64} x^{7}+\frac{15}{8} x^{5}+\frac{199}{64} x^{3}+\frac{207}{32} x}{\left(x^{4}+2 x^{2}+3\right)^{2}}-\frac{307 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024}-\frac{399 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024}
\end{aligned}
$$

$$
\begin{aligned}
& 512 \sqrt{2+2 \sqrt{3}} \quad 512 \sqrt{2+2 \sqrt{3}} \quad-\frac{32 \sqrt{2+2 \sqrt{3}}}{} \\
& +\frac{307 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{1024}+\frac{399 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024} \\
& +\frac{307 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{512 \sqrt{2+2 \sqrt{3}}}+\frac{399 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}-\frac{23 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}})}{\sqrt{2+2 \sqrt{3}})}\right.}{32 \sqrt{2+2 \sqrt{3}}}
\end{aligned}
$$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{5 x^{6}+3 x^{4}+x^{2}+4}{\left(x^{4}+2 x^{2}+3\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 176 leaves, 11 steps):

$$
\begin{aligned}
& \frac{25 x\left(-x^{2}+1\right)}{48\left(x^{4}+2 x^{2}+3\right)^{2}}+\frac{x\left(51 x^{2}+64\right)}{192\left(x^{4}+2 x^{2}+3\right)}-\frac{\arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{-3873+3057 \sqrt{3}}}{768}+\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}})}{\sqrt{2+2 \sqrt{3}}}\right)}{768} \\
& \quad+\frac{\ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{3873+3057 \sqrt{3}}}{1536}-\frac{\ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{3873+3057 \sqrt{3}}}{1536}
\end{aligned}
$$

Result(type 3, 417 leaves):
$\frac{\frac{17}{64} x^{7}+\frac{83}{96} x^{5}+\frac{181}{192} x^{3}+\frac{73}{48} x}{\left(x^{4}+2 x^{2}+3\right)^{2}}-\frac{55 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{3072}-\frac{21 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024}$

$$
\begin{aligned}
& +\frac{55 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{1536 \sqrt{2+2 \sqrt{3}}}+\frac{21 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}-\frac{\arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}})}{\sqrt{2+2 \sqrt{3}})}\right.}{48 \sqrt{2+2 \sqrt{3}}} \\
& +\frac{55 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{3072}+\frac{21 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{1024} \\
& +\frac{55 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{1536 \sqrt{2+2 \sqrt{3}}}+\frac{21 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{512 \sqrt{2+2 \sqrt{3}}}-\frac{\arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}) \sqrt{3}}\right.}{48 \sqrt{2+2 \sqrt{3}}}
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{5 x^{6}+3 x^{4}+x^{2}+4}{x^{4}\left(x^{4}+2 x^{2}+3\right)^{3}} d x
$$

Optimal(type 3, 186 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{4}{81 x^{3}}+\frac{7}{27 x}+\frac{25 x\left(5 x^{2}+7\right)}{432\left(x^{4}+2 x^{2}+3\right)^{2}}+\frac{x\left(1025 x^{2}+1474\right)}{5184\left(x^{4}+2 x^{2}+3\right)}+\frac{\ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-30014223+33721353 \sqrt{3}}}{124416} \\
& \quad-\frac{\ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-30014223+33721353 \sqrt{3}}}{124416}-\frac{\arctan \left(\frac{-2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{30014223+33721353 \sqrt{3}}}{62208} \\
& \quad \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{30014223+33721353 \sqrt{3}} \\
& +\frac{62208}{}
\end{aligned}
$$

Result(type 3, 428 leaves):

$$
\begin{aligned}
& -\frac{4}{81 x^{3}}+\frac{7}{27 x}+\frac{\frac{1025}{192} x^{7}+\frac{881}{48} x^{5}+\frac{7523}{192} x^{3}+\frac{1087}{32} x}{27\left(x^{4}+2 x^{2}+3\right)^{2}}-\frac{4865 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{248832} \\
& -\frac{127 \ln \left(x^{2}+\sqrt{3}+x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{82944}+\frac{4865 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}})(-2+2 \sqrt{3}) \sqrt{3}}\right.}{124416 \sqrt{2+2 \sqrt{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{127 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{41472 \sqrt{2+2 \sqrt{3}}}\right) \sqrt{1121 \arctan \left(\frac{2 x+\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{3}} \\
& +\frac{4865 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}} \sqrt{3}}{248832}+\frac{127 \ln \left(x^{2}+\sqrt{3}-x \sqrt{-2+2 \sqrt{3}}\right) \sqrt{-2+2 \sqrt{3}}}{82944} \\
& +\frac{4865 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3}) \sqrt{3}}{124416 \sqrt{2+2 \sqrt{3}}} \\
& +\frac{127 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right)(-2+2 \sqrt{3})}{41472 \sqrt{2+2 \sqrt{3}}} \\
& +\frac{1121 \arctan \left(\frac{2 x-\sqrt{-2+2 \sqrt{3}}}{\sqrt{2+2 \sqrt{3}}}\right) \sqrt{3}}{7776 \sqrt{2+2 \sqrt{3}}}
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}\left(g x^{6}+f x^{4}+e x^{2}+d\right)}{\left(c x^{4}+b x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 547 leaves, 6 steps):
$\frac{(-2 b g+c f) x}{c^{3}}+\frac{g x^{3}}{3 c^{2}}$

$$
\begin{aligned}
& +\frac{x\left(a\left(2 c^{3} d-c^{2}(2 a f+b e)-b^{3} g+b c(3 a g+b f)\right)+\left(b^{3} c f+b c^{2}(-3 a f+c d)-b^{4} g-b^{2} c(-4 a g+c e)+2 a c^{2}(-a g+c e)\right) x^{2}\right)}{2 c^{3}\left(-4 a c+b^{2}\right)\left(c x^{4}+b x^{2}+a\right)} \\
& -\frac{1}{4 c^{7 / 2}\left(-4 a c+b^{2}\right) \sqrt{b-\sqrt{-4 a c+b^{2}}}}\left(\operatorname { a r c t a n } (\frac { x \sqrt { 2 } \sqrt { c } } { \sqrt { b - \sqrt { - 4 a c + b ^ { 2 } } } }) \left(3 b^{3} c f-b c^{2}(13 a f+c d)-5 b^{4} g-b^{2} c(-24 a g+c e)+2 a c^{2}(-7 a g\right.\right. \\
& \left.\left.+3 c e)+\frac{-3 b^{4} c f+4 a c^{3}(-5 a f+c d)+b^{2} c^{2}(19 a f+c d)+5 b^{5} g+b^{3} c(-34 a g+c e)-4 a b c^{2}(-13 a g+2 c e)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}\right) \\
& -\frac{1}{4 c^{7 / 2}\left(-4 a c+b^{2}\right) \sqrt{b+\sqrt{-4 a c+b^{2}}}}\left(\operatorname{arctan(\frac {x\sqrt {2}\sqrt {c}}{\sqrt {b+\sqrt {-4ac+b^{2}}}})(3b^{3}cf-bc^{2}(13af+cd)-5b^{4}g-b^{2}c(-24ag+ce)+2ac^{2}(-7ag}\right) \\
& \left.\left.+3 c e)+\frac{3 b^{4} c f-4 a c^{3}(-5 a f+c d)-b^{2}}{c^{2}(19 a f+c d)-5 b^{5} g-b^{3} c(-34 a g+c e)+4 a b c^{2}(-13 a g+2 c e)}\right) \sqrt{2}\right)
\end{aligned}
$$

Result(type ?, 8532 leaves): Display of huge result suppressed!

Test results for the 14 problems in "1.2.2.7 $P(x)\left(d+e x^{\wedge} 2\right)^{\wedge} q\left(a+b x^{\wedge} 2+c x^{\wedge} 4\right)^{\wedge} p . t x t "$
Problem 5: Unable to integrate problem.

$$
\int \frac{\left(B x^{2}+A\right)\left(e x^{2}+d\right)^{q}}{c x^{4}+a} \mathrm{~d} x
$$

Optimal(type 6, 141 leaves, 6 steps):

$$
\frac{x\left(e x^{2}+d\right)^{q} \text { AppellFI }\left(\frac{1}{2},-q, 1, \frac{3}{2},-\frac{e x^{2}}{d},-\frac{x^{2} \sqrt{c}}{\sqrt{-a}}\right)\left(A-\frac{B \sqrt{-a}}{\sqrt{c}}\right)}{2 a\left(1+\frac{e x^{2}}{d}\right)^{q}}+\frac{x\left(e x^{2}+d\right)^{q} \text { AppellFI }\left(\frac{1}{2}, 1,-q, \frac{3}{2}, \frac{x^{2} \sqrt{c}}{\sqrt{-a}},-\frac{e x^{2}}{d}\right)\left(A+\frac{B \sqrt{-a}}{\sqrt{c}}\right)}{2 a\left(1+\frac{e x^{2}}{d}\right)^{q}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{\left(B x^{2}+A\right)\left(e x^{2}+d\right)^{q}}{c x^{4}+a} \mathrm{~d} x
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(B x^{2}+A\right)\left(e x^{2}+d\right)^{3}}{\sqrt{c x^{4}+b x^{2}+a}} \mathrm{~d} x
$$

Optimal(type 4, 739 leaves, 6 steps):
$\frac{e\left(7 A c e(-4 b e+15 c d)+B\left(105 c^{2} d^{2}+24 b^{2} e^{2}-c e(25 a e+84 b d)\right)\right) x \sqrt{c x^{4}+b x^{2}+a}}{105 c^{3}}+\frac{e^{2}(7 A c e-6 b B e+21 B c d) x^{3} \sqrt{c x^{4}+b x^{2}+a}}{35 c^{2}}$

$$
\begin{aligned}
& +\frac{B e^{3} x^{5} \sqrt{c x^{4}+b x^{2}+a}}{7 c} \\
& +\frac{\left(7 A c e\left(45 c^{2} d^{2}+8 b^{2} e^{2}-3 c e(3 a e+10 b d)\right)+B\left(105 c^{3} d^{3}-48 b^{3} e^{3}-21 c^{2} d e(9 a e+10 b d)+8 b c e^{2}(13 a e+21 b d)\right)\right) x \sqrt{c x^{4}+b x^{2}+a}}{105 c^{7 / 2}\left(\sqrt{a}+x^{2} \sqrt{c}\right)} \\
& -\frac{1}{105 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{15 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a ^ { 1 / 4 } \left(7 A c e\left(45 c^{2} d^{2}+8 b^{2} e^{2}-3 c e(3 a e+10 b d)\right)+B\left(105 c^{3} d^{3}-48 b^{3} e^{3}\right.\right.\right. \\
& \left.\left.-21 c^{2} d e(9 a e+10 b d)+8 b c e^{2}(13 a e+21 b d)\right)\right) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)(\sqrt{a}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+x^{2} \sqrt{c}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right) \\
& +\frac{1}{210 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{15 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a^{1 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)(\sqrt{a}\right. \\
& \left.+x^{2} \sqrt{c}\right)\left(7 A c e\left(45 c^{2} d^{2}+8 b^{2} e^{2}-3 c e(3 a e+10 b d)\right)+B\left(105 c^{3} d^{3}-48 b^{3} e^{3}-21 c^{2} d e(9 a e+10 b d)+8 b c e^{2}(13 a e+21 b d)\right)\right. \\
& \left.\left.+\frac{\left(7 A c\left(4 a b e^{3}-15 a c d e^{2}+15 c^{2} d^{3}\right)-a B e\left(105 c^{2} d^{2}+24 b^{2} e^{2}-c e(25 a e+84 b d)\right)\right) \sqrt{c}}{\sqrt{a}}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right)
\end{aligned}
$$

Result(type 4, 1707 leaves):

$$
\left.\left.\left.\sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right)+\left(A e^{3}+3 B d e^{2}\right)\left(\frac{x^{3} \sqrt{c x^{4}+b x^{2}+a}}{5 c}-\frac{4 b x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{2}}\right.
$$

$$
+\frac{1}{15 c^{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(b a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right.
$$

$$
\left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\frac{1}{2 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(\left(-\frac{3 a}{5 c}\right.\right.
$$

$$
\begin{aligned}
& \left.+\frac{8 b^{2}}{15 c^{2}}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.\right. \\
& \left.\left.\frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)\right)+\left(3 A d e^{2}\right. \\
& \left.+3 B d^{2} e\right)\left(\frac{x \sqrt{c x^{4}+b x^{2}+a}}{3 c}\right. \\
& -\frac{1}{12 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right. \\
& \left.\left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right) \\
& +\frac{1}{3 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(b a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\right. \\
& \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)- \text { EllipticE }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.}{2},\right. \\
& \frac{\left.\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)\right)(2}{2}\left(3 A d^{2} e\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+B d^{3}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\left(\text { EllipticF } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.\right. \\
& \left.\left.\frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)\right)+B e^{3}\left(\frac{x^{5} \sqrt{c x^{4}+b x^{2}+a}}{7 c}\right. \\
& \left.-\frac{6 b x^{3} \sqrt{c x^{4}+b x^{2}+a}}{35 c^{2}}+\frac{\left(-\frac{5 a}{7 c}+\frac{24 b^{2}}{35 c^{2}}\right) x \sqrt{c x^{4}+b x^{2}+a}}{3 c}-\frac{1}{12 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a} \sqrt{c x^{4}+b x^{2}+a}}\left(-\frac{5 a}{7 c}\right)(-2 l}\right) \\
& \left.+\frac{24 b^{2}}{35 c^{2}}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right. \\
& \left.\frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\frac{1}{2 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(\left(\frac{18 b a}{35 c^{2}}\right.\right. \\
& \left.-\frac{2\left(-\frac{5 a}{7 c}+\frac{24 b^{2}}{35 c^{2}}\right) b}{3 c}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.\right. \\
& \left.\left.\left.\frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right)\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(B x^{2}+A\right)\left(e x^{2}+d\right)^{2}}{\sqrt{c x^{4}+b x^{2}+a}} \mathrm{~d} x
$$

Optimal(type 4, 516 leaves, 5 steps):
$\frac{e(5 A c e-4 b B e+10 B c d) x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{2}}+\frac{B e^{2} x^{3} \sqrt{c x^{4}+b x^{2}+a}}{5 c}$

$$
\begin{aligned}
& +\frac{\left(10 A c e(-b e+3 c d)+B\left(15 c^{2} d^{2}+8 b^{2} e^{2}-c e(9 a e+20 b d)\right)\right) x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{5 / 2}\left(\sqrt{a}+x^{2} \sqrt{c}\right)} \\
& -\frac{1}{15 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{11 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a ^ { 1 / 4 } \left(10 A c e(-b e+3 c d)+B\left(15 c^{2} d^{2}+8 b^{2} e^{2}-c e(9 a e\right.\right.\right. \\
& \left.+20 b d))) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)\left(\sqrt{a}+x^{2} \sqrt{c}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right) \\
& +\frac{1}{30 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{11 / 4} \sqrt{c x^{4}+b x^{2}+a}} \\
& +a^{1 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\left.\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}\right)}{2}\right)(\sqrt{a} \\
& \left.+x^{2} \sqrt{c}\right)\left(10 A c e(-b e+3 c d)+B\left(15 c^{2} d^{2}+8 b^{2} e^{2}-c e(9 a e+20 b d)\right)\right. \\
& \left.\left.-\frac{\left(2 a B e(-2 b e+5 c d)-5 A c\left(-a e^{2}+3 c d^{2}\right)\right) \sqrt{c}}{\sqrt{a}}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right)
\end{aligned}
$$

Result(type 4, 1200 leaves):
$\frac{1}{4 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(A d^{2} \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\right.$ EllipticF $\left(\frac{1}{2}(x \sqrt{2}\right.$

$$
\begin{aligned}
& \left.\sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\left.\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)\right)+\left(A e^{2}+2 B d e\right)\left(\frac{x \sqrt{c x^{4}+b x^{2}+a}}{3 c}\right.}{2} \\
& -\frac{1}{12 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right. \\
& \left.\left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right) \\
& +\frac{1}{3 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(b a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\right. \\
& \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\text { EllipticE }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right. \\
& \left.\frac{\left.\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)\right)(2}{2}\right) \frac{1}{2 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)} \\
& \left.+B d^{2}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)\right)+B e^{2}\left(\frac{x^{3} \sqrt{c x^{4}+b x^{2}+a}}{5 c}\right. \\
& -\frac{4 b x \sqrt{c x^{4}+b x^{2}+a}}{15 c^{2}} \\
& +\frac{1}{15 c^{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(b a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right. \\
& \left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\frac{1}{2 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(\left(-\frac{3 a}{5 c}\right.\right. \\
& \left.+\frac{8 b^{2}}{15 c^{2}}\right) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right.\right.
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(B x^{2}+A\right)\left(e x^{2}+d\right)}{\sqrt{c x^{4}+b x^{2}+a}} \mathrm{~d} x
$$

Optimal(type 4, 360 leaves, 4 steps):
$\frac{B e x \sqrt{c x^{4}+b x^{2}+a}}{3 c}+\frac{(3 A c e-2 b B e+3 B c d) x \sqrt{c x^{4}+b x^{2}+a}}{3 c^{3 / 2}\left(\sqrt{a}+x^{2} \sqrt{c}\right)}$

$$
\begin{aligned}
& -\frac{1}{3 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{7 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a^{1 / 4}(3 A c e-2 b B e\right. \\
& +3 B c d) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)\left(\sqrt{a}+x^{2} \sqrt{c}\right) \sqrt{\left.\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}\right)} \\
& +\frac{1}{6 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) c^{7 / 4} \sqrt{c x^{4}+b x^{2}+a}}\left(a^{1 / 4 \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{2}} \sqrt{a} \sqrt{c}}{2}\right)(\sqrt{a}}\right. \\
& \left.+x^{2} \sqrt{c}\right)\left(3 B c d-2 b B e+3 A c e+\frac{(3 A c d-a B e) \sqrt{c}}{\sqrt{a}}\right) \sqrt{\left.\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}\right)} \\
&
\end{aligned}
$$

Result(type 4, 758 leaves):
$\frac{1}{4 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(A d \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\right.$ EllipticF $\frac{1}{2}(x \sqrt{2}$

$$
\begin{aligned}
& \left.\left.\sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\frac{1}{2 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}((A e \\
& +B d) a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{\left.-4 a c+b^{2}\right) x^{2}}\right.}{a}}\left(\operatorname { E l l i p t i c F } \left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)-\operatorname{EllipticE}\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)\right)+B e\left(\frac{x \sqrt{c x^{4}+b x^{2}+a}}{3 c}\right. \\
& -\frac{1}{12 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(a \sqrt { 2 } \sqrt { 4 - \frac { 2 (- b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \sqrt { 4 + \frac { 2 (b + \sqrt { - 4 a c + b ^ { 2 } }) x ^ { 2 } } { a } } \text { EllipticF } \left(\frac{1}{2}(x\right.\right. \\
& \left.\left.\left.\sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}\right), \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right) \\
& +\frac{1}{3 c \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(b a \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}}\right. \\
& \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\text { EllipticE }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2},\right. \\
& \left.\left.\left.\frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)\right)\right)
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{B x^{2}+A}{\left(e x^{2}+d\right)^{3} \sqrt{c x^{4}+b x^{2}+a}} \mathrm{~d} x
$$

Optimal(type 4, 1080 leaves, 7 steps):
$-\frac{1}{16 d^{5 / 2}\left(a e^{2}-b d e+c d^{2}\right)^{5 / 2} \sqrt{e}}\left(\left(B d\left(3 c^{2} d^{4}-10 a c d^{2} e^{2}+a e^{3}(-a e+4 b d)\right)-A e\left(15 c^{2} d^{4}-2 c d^{2} e(-3 a e+10 b d)+e^{2}\left(3 a^{2} e^{2}-8 a b d e\right.\right.\right.\right.$

$$
\begin{aligned}
& \left.\left.\left.\left.+8 b^{2} d^{2}\right)\right)\right) \arctan \left(\frac{x \sqrt{a e^{2}-b d e+c d^{2}}}{\sqrt{d} \sqrt{e} \sqrt{c x^{4}+b x^{2}+a}}\right)\right)-\frac{e(-A e+B d) x \sqrt{c x^{4}+b x^{2}+a}}{4 d\left(a e^{2}-b d e+c d^{2}\right)\left(e x^{2}+d\right)^{2}} \\
& +\frac{e\left(3 A e\left(3 c d^{2}-e(-a e+2 b d)\right)-B d\left(5 c d^{2}-e(a e+2 b d)\right)\right) x \sqrt{c x^{4}+b x^{2}+a}}{8 d^{2}\left(a e^{2}-b d e+c d^{2}\right)^{2}\left(e x^{2}+d\right)} \\
& -\frac{\left(3 A e\left(3 c d^{2}-e(-a e+2 b d)\right)-B d\left(5 c d^{2}-e(a e+2 b d)\right)\right) x \sqrt{c} \sqrt{c x^{4}+b x^{2}+a}}{8 d^{2}\left(a e^{2}-b d e+c d^{2}\right)^{2}\left(\sqrt{a}+x^{2} \sqrt{c}\right)} \\
& +\frac{1}{8 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) d^{2}\left(a e^{2}-b d e+c d^{2}\right)^{2} \sqrt{c x^{4}+b x^{2}+a}}\left(a ^ { 1 / 4 } c ^ { 1 / 4 } \left(3 A e\left(3 c d^{2}-e(-a e+2 b d)\right)-B d\left(5 c d^{2}-e(a e\right.\right.\right. \\
& \left.+2 b d))) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)\left(\sqrt{a}+x^{2} \sqrt{c}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right) \\
& +\left(\left(B d\left(3 c^{2} d^{4}-10 a c d^{2} e^{2}+a e^{3}(-a e+4 b d)\right)-A e\left(15 c^{2} d^{4}-2 c d^{2} e(-3 a e+10 b d)+e^{2}\left(3 a^{2} e^{2}-8 a b d e+8 b^{2} d^{2}\right)\right)\right) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}}\right. \\
& \left.+d \sqrt{c}) \sqrt{c x^{4}+b x^{2}+a}\right)+\left(c^{1 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right), \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)(\sqrt{a}\right. \\
& \left.\left.+x^{2} \sqrt{c}\right)(a e(3 A e+B d)+4 A d(-b e+c d)+d(-A e+B d) \sqrt{a} \sqrt{c}) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right) /\left(8 \operatorname { c o s } (2 \operatorname { a r c t a n } (\frac { c ^ { 1 / 4 } x } { a ^ { 1 / 4 } })) a ^ { 1 / 4 } d ^ { 2 } \left(a e^{2}\right.\right. \\
& \left.\left.-b d e+c d^{2}\right)(-e \sqrt{a}+d \sqrt{c}) \sqrt{c x^{4}+b x^{2}+a}\right)
\end{aligned}
$$

Result(type ?, 4475 leaves): Display of huge result suppressed!
Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{B x^{2}+A}{\left(e x^{2}+d\right)^{2}\left(c x^{4}+b x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 1252 leaves, 15 steps):

$$
\begin{aligned}
& e^{3 / 2}\left(A e\left(7 c d^{2}-e(-a e+4 b d)\right)-B d\left(5 c d^{2}-e(a e+2 b d)\right)\right) \arctan \left(\frac{x \sqrt{a e^{2}-b d e+c d^{2}}}{\sqrt{d} \sqrt{e} \sqrt{c x^{4}+b x^{2}+a}}\right) \\
& 4 d^{3 / 2}\left(a e^{2}-b d e+c d^{2}\right)^{5 / 2} \\
& +\frac{1}{a\left(-4 a c+b^{2}\right)\left(a e^{2}-b d e+c d^{2}\right)^{2} \sqrt{c x^{4}+b x^{2}+a}}\left(x \left(a b c\left(A e(-b e+2 c d)-B\left(-a e^{2}+c d^{2}\right)\right)+\left(-2 a c+b^{2}\right)\left(a B e(-b e+2 c d)+A\left(c^{2} d^{2}\right.\right.\right.\right. \\
& \left.\left.\left.\left.+b^{2} e^{2}-c e(a e+2 b d)\right)\right)-c\left(a B\left(2 c^{2} d^{2}+b^{2} e^{2}-2 c e(a e+b d)\right)+A\left(2 b^{2} c d e-4 a c^{2} d e-b^{3} e^{2}-b c\left(-3 a e^{2}+c d^{2}\right)\right)\right) x^{2}\right)\right) \\
& -\frac{e^{3}(-A e+B d) x \sqrt{c x^{4}+b x^{2}+a}}{2 d\left(a e^{2}-b d e+c d^{2}\right)^{2}\left(e x^{2}+d\right)} \\
& +\frac{1}{2 a\left(4 a c-b^{2}\right) d\left(c d^{2}+e(a e-b d)\right)^{2}\left(\sqrt{a}+x^{2} \sqrt{c}\right)}\left(\left(a B d\left(-4 c^{2} d^{2}-3 b^{2} e^{2}+4 c e(2 a e+b d)\right)+A\left(2 b^{3} d e^{2}+2 b c d\left(-3 a e^{2}+c d^{2}\right)\right.\right.\right. \\
& \left.\left.\left.-4 a c e\left(a e^{2}-2 c d^{2}\right)+b^{2}\left(a e^{3}-4 d^{2} e c\right)\right)\right) x \sqrt{c} \sqrt{c x^{4}+b x^{2}+a}\right)-\left(c ^ { 1 / 4 } \left(a B d\left(4 c^{2} d^{2}+3 b^{2} e^{2}-4 c e(2 a e+b d)\right)-A\left(2 b^{3} d e^{2}\right.\right.\right. \\
& \left.\left.+2 b c d\left(-3 a e^{2}+c d^{2}\right)-4 a c e\left(a e^{2}-2 c d^{2}\right)+b^{2}\left(a e^{3}-4 d^{2} e c\right)\right)\right) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \text { EllipticE }\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right),\right. \\
& \left.\left.\frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)\left(\sqrt{a}+x^{2} \sqrt{c}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right) /\left(2 \operatorname { c o s } (2 \operatorname { a r c t a n } (\frac { c ^ { 1 / 4 } x } { a ^ { 1 / 4 } })) a ^ { 3 / 4 } (- 4 a c + b ^ { 2 }) d \left(c d^{2}+e(a e\right.\right. \\
& \left.-b d))^{2} \sqrt{c x^{4}+b x^{2}+a}\right)-\left(e \left(A e\left(7 c d^{2}-e(-a e+4 b d)\right)-B d\left(5 c d^{2}-e(a e\right.\right.\right. \\
& +2 b d))) \sqrt{\cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticPi}\left(\sin \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right),-\frac{(-e \sqrt{a}+d \sqrt{c})^{2}}{4 d e \sqrt{a} \sqrt{c}}, \frac{\sqrt{2-\frac{b}{\sqrt{a} \sqrt{c}}}}{2}\right)(e \sqrt{a}+d \sqrt{c})(\sqrt{a} \\
& \left.\left.+x^{2} \sqrt{c}\right) \sqrt{\frac{c x^{4}+b x^{2}+a}{\left(\sqrt{a}+x^{2} \sqrt{c}\right)^{2}}}\right) /\left(8 \cos \left(2 \arctan \left(\frac{c^{1 / 4} x}{a^{1 / 4}}\right)\right) a^{1 / 4} c^{1 / 4} d^{2}\left(a e^{2}-b d e+c d^{2}\right)^{2}(-e \sqrt{a}+d \sqrt{c}) \sqrt{c x^{4}+b x^{2}+a}\right) \\
&)(e \sqrt{a}-d \sqrt{c})(-2 \sqrt{a} \sqrt{c}+b) \sqrt{c x^{4}+b x^{2}+a}\right)
\end{aligned}
$$

Result(type ?, 8275 leaves): Display of huge result suppressed!
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{c x^{4}+b x^{2}+a}}{-c d x^{4}+a d} \mathrm{~d} x
$$

Optimal(type 3, 105 leaves, 4 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{x \sqrt{-2 \sqrt{a} \sqrt{c}+b}}{\sqrt{c x^{4}+b x^{2}+a}}\right) \sqrt{-2 \sqrt{a} \sqrt{c}+b}}{4 d \sqrt{a} \sqrt{c}}+\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2 \sqrt{a} \sqrt{c}+b}}{\sqrt{c x^{4}+b x^{2}+a}}\right) \sqrt{2 \sqrt{a} \sqrt{c}+b}}{4 d \sqrt{a} \sqrt{c}}
$$

Result(type 3, 237 leaves):

$2 d \sqrt{-4 \sqrt{a c}-2 b}$
$4 d \sqrt{a c} \sqrt{-4 \sqrt{a c}-2 b}$
$2 d \sqrt{4 \sqrt{a c}-2 b}$
$+\frac{\sqrt{2} \arctan \left(\frac{\sqrt{c x^{4}+b x^{2}+a} \sqrt{2}}{x \sqrt{4 \sqrt{a c}-2 b}}\right) b}{4 d \sqrt{a c} \sqrt{4 \sqrt{a c}-2 b}}$

Test results for the 2 problems in "1.2.2.8 $P(x)(d+e x)^{\wedge} q\left(a+b x^{\wedge} 2+c x^{\wedge} 4\right)^{\wedge} p . t x t "$
Summary of Integration Test Results
602 integration problems

A - 410 optimal antiderivatives
B - 139 more than twice size of optimal antiderivatives
C - 0 unnecessarily complex antiderivatives
D - 53 unable to integrate problems
E - O integration timeouts

[^0]: Problem 218: Unable to integrate problem.

[^1]: Problem 70: Result more than twice size of optimal antiderivative.

[^2]: Problem 81: Result more than twice size of optimal antiderivative.

[^3]: Problem 101: Result is not expressed in closed-form.

[^4]: Problem 33: Result more than twice size of optimal antiderivative.

